Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2139 lines
76 KiB
2139 lines
76 KiB
4 years ago
|
# Arithmetic tests for DataFrame/Series/Index/Array classes that should
|
||
|
# behave identically.
|
||
|
from datetime import datetime, timedelta
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
from pandas.errors import OutOfBoundsDatetime, PerformanceWarning
|
||
|
|
||
|
import pandas as pd
|
||
|
from pandas import (
|
||
|
DataFrame,
|
||
|
DatetimeIndex,
|
||
|
NaT,
|
||
|
Series,
|
||
|
Timedelta,
|
||
|
TimedeltaIndex,
|
||
|
Timestamp,
|
||
|
timedelta_range,
|
||
|
)
|
||
|
import pandas._testing as tm
|
||
|
from pandas.tests.arithmetic.common import (
|
||
|
assert_invalid_addsub_type,
|
||
|
assert_invalid_comparison,
|
||
|
get_upcast_box,
|
||
|
)
|
||
|
|
||
|
|
||
|
def assert_dtype(obj, expected_dtype):
|
||
|
"""
|
||
|
Helper to check the dtype for a Series, Index, or single-column DataFrame.
|
||
|
"""
|
||
|
if isinstance(obj, DataFrame):
|
||
|
dtype = obj.dtypes.iat[0]
|
||
|
else:
|
||
|
dtype = obj.dtype
|
||
|
|
||
|
assert dtype == expected_dtype
|
||
|
|
||
|
|
||
|
# ------------------------------------------------------------------
|
||
|
# Timedelta64[ns] dtype Comparisons
|
||
|
|
||
|
|
||
|
class TestTimedelta64ArrayLikeComparisons:
|
||
|
# Comparison tests for timedelta64[ns] vectors fully parametrized over
|
||
|
# DataFrame/Series/TimedeltaIndex/TimedeltaArray. Ideally all comparison
|
||
|
# tests will eventually end up here.
|
||
|
|
||
|
def test_compare_timedelta64_zerodim(self, box_with_array):
|
||
|
# GH#26689 should unbox when comparing with zerodim array
|
||
|
box = box_with_array
|
||
|
xbox = box_with_array if box_with_array is not pd.Index else np.ndarray
|
||
|
|
||
|
tdi = pd.timedelta_range("2H", periods=4)
|
||
|
other = np.array(tdi.to_numpy()[0])
|
||
|
|
||
|
tdi = tm.box_expected(tdi, box)
|
||
|
res = tdi <= other
|
||
|
expected = np.array([True, False, False, False])
|
||
|
expected = tm.box_expected(expected, xbox)
|
||
|
tm.assert_equal(res, expected)
|
||
|
|
||
|
msg = "Invalid comparison between dtype"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
# zero-dim of wrong dtype should still raise
|
||
|
tdi >= np.array(4)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"td_scalar",
|
||
|
[timedelta(days=1), Timedelta(days=1), Timedelta(days=1).to_timedelta64()],
|
||
|
)
|
||
|
def test_compare_timedeltalike_scalar(self, box_with_array, td_scalar):
|
||
|
# regression test for GH#5963
|
||
|
box = box_with_array
|
||
|
xbox = box if box is not pd.Index else np.ndarray
|
||
|
ser = pd.Series([timedelta(days=1), timedelta(days=2)])
|
||
|
ser = tm.box_expected(ser, box)
|
||
|
actual = ser > td_scalar
|
||
|
expected = pd.Series([False, True])
|
||
|
expected = tm.box_expected(expected, xbox)
|
||
|
tm.assert_equal(actual, expected)
|
||
|
|
||
|
@pytest.mark.parametrize("invalid", [345600000000000, "a"])
|
||
|
def test_td64_comparisons_invalid(self, box_with_array, invalid):
|
||
|
# GH#13624 for str
|
||
|
box = box_with_array
|
||
|
rng = timedelta_range("1 days", periods=10)
|
||
|
obj = tm.box_expected(rng, box)
|
||
|
|
||
|
assert_invalid_comparison(obj, invalid, box)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"other",
|
||
|
[
|
||
|
list(range(10)),
|
||
|
np.arange(10),
|
||
|
np.arange(10).astype(np.float32),
|
||
|
np.arange(10).astype(object),
|
||
|
pd.date_range("1970-01-01", periods=10, tz="UTC").array,
|
||
|
np.array(pd.date_range("1970-01-01", periods=10)),
|
||
|
list(pd.date_range("1970-01-01", periods=10)),
|
||
|
pd.date_range("1970-01-01", periods=10).astype(object),
|
||
|
pd.period_range("1971-01-01", freq="D", periods=10).array,
|
||
|
pd.period_range("1971-01-01", freq="D", periods=10).astype(object),
|
||
|
],
|
||
|
)
|
||
|
def test_td64arr_cmp_arraylike_invalid(self, other):
|
||
|
# We don't parametrize this over box_with_array because listlike
|
||
|
# other plays poorly with assert_invalid_comparison reversed checks
|
||
|
|
||
|
rng = timedelta_range("1 days", periods=10)._data
|
||
|
assert_invalid_comparison(rng, other, tm.to_array)
|
||
|
|
||
|
def test_td64arr_cmp_mixed_invalid(self):
|
||
|
rng = timedelta_range("1 days", periods=5)._data
|
||
|
|
||
|
other = np.array([0, 1, 2, rng[3], pd.Timestamp.now()])
|
||
|
result = rng == other
|
||
|
expected = np.array([False, False, False, True, False])
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
result = rng != other
|
||
|
tm.assert_numpy_array_equal(result, ~expected)
|
||
|
|
||
|
msg = "Invalid comparison between|Cannot compare type|not supported between"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
rng < other
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
rng > other
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
rng <= other
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
rng >= other
|
||
|
|
||
|
|
||
|
class TestTimedelta64ArrayComparisons:
|
||
|
# TODO: All of these need to be parametrized over box
|
||
|
|
||
|
@pytest.mark.parametrize("dtype", [None, object])
|
||
|
def test_comp_nat(self, dtype):
|
||
|
left = pd.TimedeltaIndex(
|
||
|
[pd.Timedelta("1 days"), pd.NaT, pd.Timedelta("3 days")]
|
||
|
)
|
||
|
right = pd.TimedeltaIndex([pd.NaT, pd.NaT, pd.Timedelta("3 days")])
|
||
|
|
||
|
lhs, rhs = left, right
|
||
|
if dtype is object:
|
||
|
lhs, rhs = left.astype(object), right.astype(object)
|
||
|
|
||
|
result = rhs == lhs
|
||
|
expected = np.array([False, False, True])
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
result = rhs != lhs
|
||
|
expected = np.array([True, True, False])
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
expected = np.array([False, False, False])
|
||
|
tm.assert_numpy_array_equal(lhs == pd.NaT, expected)
|
||
|
tm.assert_numpy_array_equal(pd.NaT == rhs, expected)
|
||
|
|
||
|
expected = np.array([True, True, True])
|
||
|
tm.assert_numpy_array_equal(lhs != pd.NaT, expected)
|
||
|
tm.assert_numpy_array_equal(pd.NaT != lhs, expected)
|
||
|
|
||
|
expected = np.array([False, False, False])
|
||
|
tm.assert_numpy_array_equal(lhs < pd.NaT, expected)
|
||
|
tm.assert_numpy_array_equal(pd.NaT > lhs, expected)
|
||
|
|
||
|
def test_comparisons_nat(self):
|
||
|
tdidx1 = pd.TimedeltaIndex(
|
||
|
[
|
||
|
"1 day",
|
||
|
pd.NaT,
|
||
|
"1 day 00:00:01",
|
||
|
pd.NaT,
|
||
|
"1 day 00:00:01",
|
||
|
"5 day 00:00:03",
|
||
|
]
|
||
|
)
|
||
|
tdidx2 = pd.TimedeltaIndex(
|
||
|
["2 day", "2 day", pd.NaT, pd.NaT, "1 day 00:00:02", "5 days 00:00:03"]
|
||
|
)
|
||
|
tdarr = np.array(
|
||
|
[
|
||
|
np.timedelta64(2, "D"),
|
||
|
np.timedelta64(2, "D"),
|
||
|
np.timedelta64("nat"),
|
||
|
np.timedelta64("nat"),
|
||
|
np.timedelta64(1, "D") + np.timedelta64(2, "s"),
|
||
|
np.timedelta64(5, "D") + np.timedelta64(3, "s"),
|
||
|
]
|
||
|
)
|
||
|
|
||
|
cases = [(tdidx1, tdidx2), (tdidx1, tdarr)]
|
||
|
|
||
|
# Check pd.NaT is handles as the same as np.nan
|
||
|
for idx1, idx2 in cases:
|
||
|
|
||
|
result = idx1 < idx2
|
||
|
expected = np.array([True, False, False, False, True, False])
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
result = idx2 > idx1
|
||
|
expected = np.array([True, False, False, False, True, False])
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
result = idx1 <= idx2
|
||
|
expected = np.array([True, False, False, False, True, True])
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
result = idx2 >= idx1
|
||
|
expected = np.array([True, False, False, False, True, True])
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
result = idx1 == idx2
|
||
|
expected = np.array([False, False, False, False, False, True])
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
result = idx1 != idx2
|
||
|
expected = np.array([True, True, True, True, True, False])
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
# TODO: better name
|
||
|
def test_comparisons_coverage(self):
|
||
|
rng = timedelta_range("1 days", periods=10)
|
||
|
|
||
|
result = rng < rng[3]
|
||
|
expected = np.array([True, True, True] + [False] * 7)
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
result = rng == list(rng)
|
||
|
exp = rng == rng
|
||
|
tm.assert_numpy_array_equal(result, exp)
|
||
|
|
||
|
|
||
|
# ------------------------------------------------------------------
|
||
|
# Timedelta64[ns] dtype Arithmetic Operations
|
||
|
|
||
|
|
||
|
class TestTimedelta64ArithmeticUnsorted:
|
||
|
# Tests moved from type-specific test files but not
|
||
|
# yet sorted/parametrized/de-duplicated
|
||
|
|
||
|
def test_ufunc_coercions(self):
|
||
|
# normal ops are also tested in tseries/test_timedeltas.py
|
||
|
idx = TimedeltaIndex(["2H", "4H", "6H", "8H", "10H"], freq="2H", name="x")
|
||
|
|
||
|
for result in [idx * 2, np.multiply(idx, 2)]:
|
||
|
assert isinstance(result, TimedeltaIndex)
|
||
|
exp = TimedeltaIndex(["4H", "8H", "12H", "16H", "20H"], freq="4H", name="x")
|
||
|
tm.assert_index_equal(result, exp)
|
||
|
assert result.freq == "4H"
|
||
|
|
||
|
for result in [idx / 2, np.divide(idx, 2)]:
|
||
|
assert isinstance(result, TimedeltaIndex)
|
||
|
exp = TimedeltaIndex(["1H", "2H", "3H", "4H", "5H"], freq="H", name="x")
|
||
|
tm.assert_index_equal(result, exp)
|
||
|
assert result.freq == "H"
|
||
|
|
||
|
idx = TimedeltaIndex(["2H", "4H", "6H", "8H", "10H"], freq="2H", name="x")
|
||
|
for result in [-idx, np.negative(idx)]:
|
||
|
assert isinstance(result, TimedeltaIndex)
|
||
|
exp = TimedeltaIndex(
|
||
|
["-2H", "-4H", "-6H", "-8H", "-10H"], freq="-2H", name="x"
|
||
|
)
|
||
|
tm.assert_index_equal(result, exp)
|
||
|
assert result.freq == "-2H"
|
||
|
|
||
|
idx = TimedeltaIndex(["-2H", "-1H", "0H", "1H", "2H"], freq="H", name="x")
|
||
|
for result in [abs(idx), np.absolute(idx)]:
|
||
|
assert isinstance(result, TimedeltaIndex)
|
||
|
exp = TimedeltaIndex(["2H", "1H", "0H", "1H", "2H"], freq=None, name="x")
|
||
|
tm.assert_index_equal(result, exp)
|
||
|
assert result.freq is None
|
||
|
|
||
|
def test_subtraction_ops(self):
|
||
|
# with datetimes/timedelta and tdi/dti
|
||
|
tdi = TimedeltaIndex(["1 days", pd.NaT, "2 days"], name="foo")
|
||
|
dti = pd.date_range("20130101", periods=3, name="bar")
|
||
|
td = Timedelta("1 days")
|
||
|
dt = Timestamp("20130101")
|
||
|
|
||
|
msg = "cannot subtract a datelike from a TimedeltaArray"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
tdi - dt
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
tdi - dti
|
||
|
|
||
|
msg = r"unsupported operand type\(s\) for -"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
td - dt
|
||
|
|
||
|
msg = "(bad|unsupported) operand type for unary"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
td - dti
|
||
|
|
||
|
result = dt - dti
|
||
|
expected = TimedeltaIndex(["0 days", "-1 days", "-2 days"], name="bar")
|
||
|
tm.assert_index_equal(result, expected)
|
||
|
|
||
|
result = dti - dt
|
||
|
expected = TimedeltaIndex(["0 days", "1 days", "2 days"], name="bar")
|
||
|
tm.assert_index_equal(result, expected)
|
||
|
|
||
|
result = tdi - td
|
||
|
expected = TimedeltaIndex(["0 days", pd.NaT, "1 days"], name="foo")
|
||
|
tm.assert_index_equal(result, expected, check_names=False)
|
||
|
|
||
|
result = td - tdi
|
||
|
expected = TimedeltaIndex(["0 days", pd.NaT, "-1 days"], name="foo")
|
||
|
tm.assert_index_equal(result, expected, check_names=False)
|
||
|
|
||
|
result = dti - td
|
||
|
expected = DatetimeIndex(
|
||
|
["20121231", "20130101", "20130102"], freq="D", name="bar"
|
||
|
)
|
||
|
tm.assert_index_equal(result, expected, check_names=False)
|
||
|
|
||
|
result = dt - tdi
|
||
|
expected = DatetimeIndex(["20121231", pd.NaT, "20121230"], name="foo")
|
||
|
tm.assert_index_equal(result, expected)
|
||
|
|
||
|
def test_subtraction_ops_with_tz(self):
|
||
|
|
||
|
# check that dt/dti subtraction ops with tz are validated
|
||
|
dti = pd.date_range("20130101", periods=3)
|
||
|
ts = Timestamp("20130101")
|
||
|
dt = ts.to_pydatetime()
|
||
|
dti_tz = pd.date_range("20130101", periods=3).tz_localize("US/Eastern")
|
||
|
ts_tz = Timestamp("20130101").tz_localize("US/Eastern")
|
||
|
ts_tz2 = Timestamp("20130101").tz_localize("CET")
|
||
|
dt_tz = ts_tz.to_pydatetime()
|
||
|
td = Timedelta("1 days")
|
||
|
|
||
|
def _check(result, expected):
|
||
|
assert result == expected
|
||
|
assert isinstance(result, Timedelta)
|
||
|
|
||
|
# scalars
|
||
|
result = ts - ts
|
||
|
expected = Timedelta("0 days")
|
||
|
_check(result, expected)
|
||
|
|
||
|
result = dt_tz - ts_tz
|
||
|
expected = Timedelta("0 days")
|
||
|
_check(result, expected)
|
||
|
|
||
|
result = ts_tz - dt_tz
|
||
|
expected = Timedelta("0 days")
|
||
|
_check(result, expected)
|
||
|
|
||
|
# tz mismatches
|
||
|
msg = "Timestamp subtraction must have the same timezones or no timezones"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
dt_tz - ts
|
||
|
msg = "can't subtract offset-naive and offset-aware datetimes"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
dt_tz - dt
|
||
|
msg = "Timestamp subtraction must have the same timezones or no timezones"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
dt_tz - ts_tz2
|
||
|
msg = "can't subtract offset-naive and offset-aware datetimes"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
dt - dt_tz
|
||
|
msg = "Timestamp subtraction must have the same timezones or no timezones"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
ts - dt_tz
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
ts_tz2 - ts
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
ts_tz2 - dt
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
ts_tz - ts_tz2
|
||
|
|
||
|
# with dti
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
dti - ts_tz
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
dti_tz - ts
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
dti_tz - ts_tz2
|
||
|
|
||
|
result = dti_tz - dt_tz
|
||
|
expected = TimedeltaIndex(["0 days", "1 days", "2 days"])
|
||
|
tm.assert_index_equal(result, expected)
|
||
|
|
||
|
result = dt_tz - dti_tz
|
||
|
expected = TimedeltaIndex(["0 days", "-1 days", "-2 days"])
|
||
|
tm.assert_index_equal(result, expected)
|
||
|
|
||
|
result = dti_tz - ts_tz
|
||
|
expected = TimedeltaIndex(["0 days", "1 days", "2 days"])
|
||
|
tm.assert_index_equal(result, expected)
|
||
|
|
||
|
result = ts_tz - dti_tz
|
||
|
expected = TimedeltaIndex(["0 days", "-1 days", "-2 days"])
|
||
|
tm.assert_index_equal(result, expected)
|
||
|
|
||
|
result = td - td
|
||
|
expected = Timedelta("0 days")
|
||
|
_check(result, expected)
|
||
|
|
||
|
result = dti_tz - td
|
||
|
expected = DatetimeIndex(["20121231", "20130101", "20130102"], tz="US/Eastern")
|
||
|
tm.assert_index_equal(result, expected)
|
||
|
|
||
|
def test_dti_tdi_numeric_ops(self):
|
||
|
# These are normally union/diff set-like ops
|
||
|
tdi = TimedeltaIndex(["1 days", pd.NaT, "2 days"], name="foo")
|
||
|
dti = pd.date_range("20130101", periods=3, name="bar")
|
||
|
|
||
|
# TODO(wesm): unused?
|
||
|
# td = Timedelta('1 days')
|
||
|
# dt = Timestamp('20130101')
|
||
|
|
||
|
result = tdi - tdi
|
||
|
expected = TimedeltaIndex(["0 days", pd.NaT, "0 days"], name="foo")
|
||
|
tm.assert_index_equal(result, expected)
|
||
|
|
||
|
result = tdi + tdi
|
||
|
expected = TimedeltaIndex(["2 days", pd.NaT, "4 days"], name="foo")
|
||
|
tm.assert_index_equal(result, expected)
|
||
|
|
||
|
result = dti - tdi # name will be reset
|
||
|
expected = DatetimeIndex(["20121231", pd.NaT, "20130101"])
|
||
|
tm.assert_index_equal(result, expected)
|
||
|
|
||
|
def test_addition_ops(self):
|
||
|
# with datetimes/timedelta and tdi/dti
|
||
|
tdi = TimedeltaIndex(["1 days", pd.NaT, "2 days"], name="foo")
|
||
|
dti = pd.date_range("20130101", periods=3, name="bar")
|
||
|
td = Timedelta("1 days")
|
||
|
dt = Timestamp("20130101")
|
||
|
|
||
|
result = tdi + dt
|
||
|
expected = DatetimeIndex(["20130102", pd.NaT, "20130103"], name="foo")
|
||
|
tm.assert_index_equal(result, expected)
|
||
|
|
||
|
result = dt + tdi
|
||
|
expected = DatetimeIndex(["20130102", pd.NaT, "20130103"], name="foo")
|
||
|
tm.assert_index_equal(result, expected)
|
||
|
|
||
|
result = td + tdi
|
||
|
expected = TimedeltaIndex(["2 days", pd.NaT, "3 days"], name="foo")
|
||
|
tm.assert_index_equal(result, expected)
|
||
|
|
||
|
result = tdi + td
|
||
|
expected = TimedeltaIndex(["2 days", pd.NaT, "3 days"], name="foo")
|
||
|
tm.assert_index_equal(result, expected)
|
||
|
|
||
|
# unequal length
|
||
|
msg = "cannot add indices of unequal length"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
tdi + dti[0:1]
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
tdi[0:1] + dti
|
||
|
|
||
|
# random indexes
|
||
|
msg = "Addition/subtraction of integers and integer-arrays"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
tdi + pd.Int64Index([1, 2, 3])
|
||
|
|
||
|
# this is a union!
|
||
|
# pytest.raises(TypeError, lambda : Int64Index([1,2,3]) + tdi)
|
||
|
|
||
|
result = tdi + dti # name will be reset
|
||
|
expected = DatetimeIndex(["20130102", pd.NaT, "20130105"])
|
||
|
tm.assert_index_equal(result, expected)
|
||
|
|
||
|
result = dti + tdi # name will be reset
|
||
|
expected = DatetimeIndex(["20130102", pd.NaT, "20130105"])
|
||
|
tm.assert_index_equal(result, expected)
|
||
|
|
||
|
result = dt + td
|
||
|
expected = Timestamp("20130102")
|
||
|
assert result == expected
|
||
|
|
||
|
result = td + dt
|
||
|
expected = Timestamp("20130102")
|
||
|
assert result == expected
|
||
|
|
||
|
# TODO: Needs more informative name, probably split up into
|
||
|
# more targeted tests
|
||
|
@pytest.mark.parametrize("freq", ["D", "B"])
|
||
|
def test_timedelta(self, freq):
|
||
|
index = pd.date_range("1/1/2000", periods=50, freq=freq)
|
||
|
|
||
|
shifted = index + timedelta(1)
|
||
|
back = shifted + timedelta(-1)
|
||
|
back = back._with_freq("infer")
|
||
|
tm.assert_index_equal(index, back)
|
||
|
|
||
|
if freq == "D":
|
||
|
expected = pd.tseries.offsets.Day(1)
|
||
|
assert index.freq == expected
|
||
|
assert shifted.freq == expected
|
||
|
assert back.freq == expected
|
||
|
else: # freq == 'B'
|
||
|
assert index.freq == pd.tseries.offsets.BusinessDay(1)
|
||
|
assert shifted.freq is None
|
||
|
assert back.freq == pd.tseries.offsets.BusinessDay(1)
|
||
|
|
||
|
result = index - timedelta(1)
|
||
|
expected = index + timedelta(-1)
|
||
|
tm.assert_index_equal(result, expected)
|
||
|
|
||
|
# GH#4134, buggy with timedeltas
|
||
|
rng = pd.date_range("2013", "2014")
|
||
|
s = Series(rng)
|
||
|
result1 = rng - pd.offsets.Hour(1)
|
||
|
result2 = DatetimeIndex(s - np.timedelta64(100000000))
|
||
|
result3 = rng - np.timedelta64(100000000)
|
||
|
result4 = DatetimeIndex(s - pd.offsets.Hour(1))
|
||
|
|
||
|
assert result1.freq == rng.freq
|
||
|
result1 = result1._with_freq(None)
|
||
|
tm.assert_index_equal(result1, result4)
|
||
|
|
||
|
assert result3.freq == rng.freq
|
||
|
result3 = result3._with_freq(None)
|
||
|
tm.assert_index_equal(result2, result3)
|
||
|
|
||
|
def test_tda_add_sub_index(self):
|
||
|
# Check that TimedeltaArray defers to Index on arithmetic ops
|
||
|
tdi = TimedeltaIndex(["1 days", pd.NaT, "2 days"])
|
||
|
tda = tdi.array
|
||
|
|
||
|
dti = pd.date_range("1999-12-31", periods=3, freq="D")
|
||
|
|
||
|
result = tda + dti
|
||
|
expected = tdi + dti
|
||
|
tm.assert_index_equal(result, expected)
|
||
|
|
||
|
result = tda + tdi
|
||
|
expected = tdi + tdi
|
||
|
tm.assert_index_equal(result, expected)
|
||
|
|
||
|
result = tda - tdi
|
||
|
expected = tdi - tdi
|
||
|
tm.assert_index_equal(result, expected)
|
||
|
|
||
|
def test_tda_add_dt64_object_array(self, box_with_array, tz_naive_fixture):
|
||
|
# Result should be cast back to DatetimeArray
|
||
|
box = box_with_array
|
||
|
|
||
|
dti = pd.date_range("2016-01-01", periods=3, tz=tz_naive_fixture)
|
||
|
dti = dti._with_freq(None)
|
||
|
tdi = dti - dti
|
||
|
|
||
|
obj = tm.box_expected(tdi, box)
|
||
|
other = tm.box_expected(dti, box)
|
||
|
|
||
|
warn = None
|
||
|
if box is not pd.DataFrame or tz_naive_fixture is None:
|
||
|
warn = PerformanceWarning
|
||
|
with tm.assert_produces_warning(warn):
|
||
|
result = obj + other.astype(object)
|
||
|
tm.assert_equal(result, other)
|
||
|
|
||
|
# -------------------------------------------------------------
|
||
|
# Binary operations TimedeltaIndex and timedelta-like
|
||
|
|
||
|
def test_tdi_iadd_timedeltalike(self, two_hours, box_with_array):
|
||
|
# only test adding/sub offsets as + is now numeric
|
||
|
rng = timedelta_range("1 days", "10 days")
|
||
|
expected = timedelta_range("1 days 02:00:00", "10 days 02:00:00", freq="D")
|
||
|
|
||
|
rng = tm.box_expected(rng, box_with_array)
|
||
|
expected = tm.box_expected(expected, box_with_array)
|
||
|
|
||
|
orig_rng = rng
|
||
|
rng += two_hours
|
||
|
tm.assert_equal(rng, expected)
|
||
|
if box_with_array is not pd.Index:
|
||
|
# Check that operation is actually inplace
|
||
|
tm.assert_equal(orig_rng, expected)
|
||
|
|
||
|
def test_tdi_isub_timedeltalike(self, two_hours, box_with_array):
|
||
|
# only test adding/sub offsets as - is now numeric
|
||
|
rng = timedelta_range("1 days", "10 days")
|
||
|
expected = timedelta_range("0 days 22:00:00", "9 days 22:00:00")
|
||
|
|
||
|
rng = tm.box_expected(rng, box_with_array)
|
||
|
expected = tm.box_expected(expected, box_with_array)
|
||
|
|
||
|
orig_rng = rng
|
||
|
rng -= two_hours
|
||
|
tm.assert_equal(rng, expected)
|
||
|
if box_with_array is not pd.Index:
|
||
|
# Check that operation is actually inplace
|
||
|
tm.assert_equal(orig_rng, expected)
|
||
|
|
||
|
# -------------------------------------------------------------
|
||
|
|
||
|
def test_tdi_ops_attributes(self):
|
||
|
rng = timedelta_range("2 days", periods=5, freq="2D", name="x")
|
||
|
|
||
|
result = rng + 1 * rng.freq
|
||
|
exp = timedelta_range("4 days", periods=5, freq="2D", name="x")
|
||
|
tm.assert_index_equal(result, exp)
|
||
|
assert result.freq == "2D"
|
||
|
|
||
|
result = rng - 2 * rng.freq
|
||
|
exp = timedelta_range("-2 days", periods=5, freq="2D", name="x")
|
||
|
tm.assert_index_equal(result, exp)
|
||
|
assert result.freq == "2D"
|
||
|
|
||
|
result = rng * 2
|
||
|
exp = timedelta_range("4 days", periods=5, freq="4D", name="x")
|
||
|
tm.assert_index_equal(result, exp)
|
||
|
assert result.freq == "4D"
|
||
|
|
||
|
result = rng / 2
|
||
|
exp = timedelta_range("1 days", periods=5, freq="D", name="x")
|
||
|
tm.assert_index_equal(result, exp)
|
||
|
assert result.freq == "D"
|
||
|
|
||
|
result = -rng
|
||
|
exp = timedelta_range("-2 days", periods=5, freq="-2D", name="x")
|
||
|
tm.assert_index_equal(result, exp)
|
||
|
assert result.freq == "-2D"
|
||
|
|
||
|
rng = pd.timedelta_range("-2 days", periods=5, freq="D", name="x")
|
||
|
|
||
|
result = abs(rng)
|
||
|
exp = TimedeltaIndex(
|
||
|
["2 days", "1 days", "0 days", "1 days", "2 days"], name="x"
|
||
|
)
|
||
|
tm.assert_index_equal(result, exp)
|
||
|
assert result.freq is None
|
||
|
|
||
|
|
||
|
class TestAddSubNaTMasking:
|
||
|
# TODO: parametrize over boxes
|
||
|
|
||
|
def test_tdi_add_timestamp_nat_masking(self):
|
||
|
# GH#17991 checking for overflow-masking with NaT
|
||
|
tdinat = pd.to_timedelta(["24658 days 11:15:00", "NaT"])
|
||
|
|
||
|
tsneg = Timestamp("1950-01-01")
|
||
|
ts_neg_variants = [
|
||
|
tsneg,
|
||
|
tsneg.to_pydatetime(),
|
||
|
tsneg.to_datetime64().astype("datetime64[ns]"),
|
||
|
tsneg.to_datetime64().astype("datetime64[D]"),
|
||
|
]
|
||
|
|
||
|
tspos = Timestamp("1980-01-01")
|
||
|
ts_pos_variants = [
|
||
|
tspos,
|
||
|
tspos.to_pydatetime(),
|
||
|
tspos.to_datetime64().astype("datetime64[ns]"),
|
||
|
tspos.to_datetime64().astype("datetime64[D]"),
|
||
|
]
|
||
|
|
||
|
for variant in ts_neg_variants + ts_pos_variants:
|
||
|
res = tdinat + variant
|
||
|
assert res[1] is pd.NaT
|
||
|
|
||
|
def test_tdi_add_overflow(self):
|
||
|
# See GH#14068
|
||
|
# preliminary test scalar analogue of vectorized tests below
|
||
|
# TODO: Make raised error message more informative and test
|
||
|
with pytest.raises(OutOfBoundsDatetime, match="10155196800000000000"):
|
||
|
pd.to_timedelta(106580, "D") + Timestamp("2000")
|
||
|
with pytest.raises(OutOfBoundsDatetime, match="10155196800000000000"):
|
||
|
Timestamp("2000") + pd.to_timedelta(106580, "D")
|
||
|
|
||
|
_NaT = int(pd.NaT) + 1
|
||
|
msg = "Overflow in int64 addition"
|
||
|
with pytest.raises(OverflowError, match=msg):
|
||
|
pd.to_timedelta([106580], "D") + Timestamp("2000")
|
||
|
with pytest.raises(OverflowError, match=msg):
|
||
|
Timestamp("2000") + pd.to_timedelta([106580], "D")
|
||
|
with pytest.raises(OverflowError, match=msg):
|
||
|
pd.to_timedelta([_NaT]) - Timedelta("1 days")
|
||
|
with pytest.raises(OverflowError, match=msg):
|
||
|
pd.to_timedelta(["5 days", _NaT]) - Timedelta("1 days")
|
||
|
with pytest.raises(OverflowError, match=msg):
|
||
|
(
|
||
|
pd.to_timedelta([_NaT, "5 days", "1 hours"])
|
||
|
- pd.to_timedelta(["7 seconds", _NaT, "4 hours"])
|
||
|
)
|
||
|
|
||
|
# These should not overflow!
|
||
|
exp = TimedeltaIndex([pd.NaT])
|
||
|
result = pd.to_timedelta([pd.NaT]) - Timedelta("1 days")
|
||
|
tm.assert_index_equal(result, exp)
|
||
|
|
||
|
exp = TimedeltaIndex(["4 days", pd.NaT])
|
||
|
result = pd.to_timedelta(["5 days", pd.NaT]) - Timedelta("1 days")
|
||
|
tm.assert_index_equal(result, exp)
|
||
|
|
||
|
exp = TimedeltaIndex([pd.NaT, pd.NaT, "5 hours"])
|
||
|
result = pd.to_timedelta([pd.NaT, "5 days", "1 hours"]) + pd.to_timedelta(
|
||
|
["7 seconds", pd.NaT, "4 hours"]
|
||
|
)
|
||
|
tm.assert_index_equal(result, exp)
|
||
|
|
||
|
|
||
|
class TestTimedeltaArraylikeAddSubOps:
|
||
|
# Tests for timedelta64[ns] __add__, __sub__, __radd__, __rsub__
|
||
|
|
||
|
# TODO: moved from tests.indexes.timedeltas.test_arithmetic; needs
|
||
|
# parametrization+de-duplication
|
||
|
def test_timedelta_ops_with_missing_values(self):
|
||
|
# setup
|
||
|
s1 = pd.to_timedelta(Series(["00:00:01"]))
|
||
|
s2 = pd.to_timedelta(Series(["00:00:02"]))
|
||
|
|
||
|
msg = r"dtype datetime64\[ns\] cannot be converted to timedelta64\[ns\]"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
# Passing datetime64-dtype data to TimedeltaIndex is no longer
|
||
|
# supported GH#29794
|
||
|
pd.to_timedelta(Series([pd.NaT]))
|
||
|
|
||
|
sn = pd.to_timedelta(Series([pd.NaT], dtype="m8[ns]"))
|
||
|
|
||
|
df1 = pd.DataFrame(["00:00:01"]).apply(pd.to_timedelta)
|
||
|
df2 = pd.DataFrame(["00:00:02"]).apply(pd.to_timedelta)
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
# Passing datetime64-dtype data to TimedeltaIndex is no longer
|
||
|
# supported GH#29794
|
||
|
pd.DataFrame([pd.NaT]).apply(pd.to_timedelta)
|
||
|
|
||
|
dfn = pd.DataFrame([pd.NaT.value]).apply(pd.to_timedelta)
|
||
|
|
||
|
scalar1 = pd.to_timedelta("00:00:01")
|
||
|
scalar2 = pd.to_timedelta("00:00:02")
|
||
|
timedelta_NaT = pd.to_timedelta("NaT")
|
||
|
|
||
|
actual = scalar1 + scalar1
|
||
|
assert actual == scalar2
|
||
|
actual = scalar2 - scalar1
|
||
|
assert actual == scalar1
|
||
|
|
||
|
actual = s1 + s1
|
||
|
tm.assert_series_equal(actual, s2)
|
||
|
actual = s2 - s1
|
||
|
tm.assert_series_equal(actual, s1)
|
||
|
|
||
|
actual = s1 + scalar1
|
||
|
tm.assert_series_equal(actual, s2)
|
||
|
actual = scalar1 + s1
|
||
|
tm.assert_series_equal(actual, s2)
|
||
|
actual = s2 - scalar1
|
||
|
tm.assert_series_equal(actual, s1)
|
||
|
actual = -scalar1 + s2
|
||
|
tm.assert_series_equal(actual, s1)
|
||
|
|
||
|
actual = s1 + timedelta_NaT
|
||
|
tm.assert_series_equal(actual, sn)
|
||
|
actual = timedelta_NaT + s1
|
||
|
tm.assert_series_equal(actual, sn)
|
||
|
actual = s1 - timedelta_NaT
|
||
|
tm.assert_series_equal(actual, sn)
|
||
|
actual = -timedelta_NaT + s1
|
||
|
tm.assert_series_equal(actual, sn)
|
||
|
|
||
|
msg = "unsupported operand type"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
s1 + np.nan
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
np.nan + s1
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
s1 - np.nan
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
-np.nan + s1
|
||
|
|
||
|
actual = s1 + pd.NaT
|
||
|
tm.assert_series_equal(actual, sn)
|
||
|
actual = s2 - pd.NaT
|
||
|
tm.assert_series_equal(actual, sn)
|
||
|
|
||
|
actual = s1 + df1
|
||
|
tm.assert_frame_equal(actual, df2)
|
||
|
actual = s2 - df1
|
||
|
tm.assert_frame_equal(actual, df1)
|
||
|
actual = df1 + s1
|
||
|
tm.assert_frame_equal(actual, df2)
|
||
|
actual = df2 - s1
|
||
|
tm.assert_frame_equal(actual, df1)
|
||
|
|
||
|
actual = df1 + df1
|
||
|
tm.assert_frame_equal(actual, df2)
|
||
|
actual = df2 - df1
|
||
|
tm.assert_frame_equal(actual, df1)
|
||
|
|
||
|
actual = df1 + scalar1
|
||
|
tm.assert_frame_equal(actual, df2)
|
||
|
actual = df2 - scalar1
|
||
|
tm.assert_frame_equal(actual, df1)
|
||
|
|
||
|
actual = df1 + timedelta_NaT
|
||
|
tm.assert_frame_equal(actual, dfn)
|
||
|
actual = df1 - timedelta_NaT
|
||
|
tm.assert_frame_equal(actual, dfn)
|
||
|
|
||
|
msg = "cannot subtract a datelike from|unsupported operand type"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
df1 + np.nan
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
df1 - np.nan
|
||
|
|
||
|
actual = df1 + pd.NaT # NaT is datetime, not timedelta
|
||
|
tm.assert_frame_equal(actual, dfn)
|
||
|
actual = df1 - pd.NaT
|
||
|
tm.assert_frame_equal(actual, dfn)
|
||
|
|
||
|
# TODO: moved from tests.series.test_operators, needs splitting, cleanup,
|
||
|
# de-duplication, box-parametrization...
|
||
|
def test_operators_timedelta64(self):
|
||
|
# series ops
|
||
|
v1 = pd.date_range("2012-1-1", periods=3, freq="D")
|
||
|
v2 = pd.date_range("2012-1-2", periods=3, freq="D")
|
||
|
rs = Series(v2) - Series(v1)
|
||
|
xp = Series(1e9 * 3600 * 24, rs.index).astype("int64").astype("timedelta64[ns]")
|
||
|
tm.assert_series_equal(rs, xp)
|
||
|
assert rs.dtype == "timedelta64[ns]"
|
||
|
|
||
|
df = DataFrame(dict(A=v1))
|
||
|
td = Series([timedelta(days=i) for i in range(3)])
|
||
|
assert td.dtype == "timedelta64[ns]"
|
||
|
|
||
|
# series on the rhs
|
||
|
result = df["A"] - df["A"].shift()
|
||
|
assert result.dtype == "timedelta64[ns]"
|
||
|
|
||
|
result = df["A"] + td
|
||
|
assert result.dtype == "M8[ns]"
|
||
|
|
||
|
# scalar Timestamp on rhs
|
||
|
maxa = df["A"].max()
|
||
|
assert isinstance(maxa, Timestamp)
|
||
|
|
||
|
resultb = df["A"] - df["A"].max()
|
||
|
assert resultb.dtype == "timedelta64[ns]"
|
||
|
|
||
|
# timestamp on lhs
|
||
|
result = resultb + df["A"]
|
||
|
values = [Timestamp("20111230"), Timestamp("20120101"), Timestamp("20120103")]
|
||
|
expected = Series(values, name="A")
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
# datetimes on rhs
|
||
|
result = df["A"] - datetime(2001, 1, 1)
|
||
|
expected = Series([timedelta(days=4017 + i) for i in range(3)], name="A")
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
assert result.dtype == "m8[ns]"
|
||
|
|
||
|
d = datetime(2001, 1, 1, 3, 4)
|
||
|
resulta = df["A"] - d
|
||
|
assert resulta.dtype == "m8[ns]"
|
||
|
|
||
|
# roundtrip
|
||
|
resultb = resulta + d
|
||
|
tm.assert_series_equal(df["A"], resultb)
|
||
|
|
||
|
# timedeltas on rhs
|
||
|
td = timedelta(days=1)
|
||
|
resulta = df["A"] + td
|
||
|
resultb = resulta - td
|
||
|
tm.assert_series_equal(resultb, df["A"])
|
||
|
assert resultb.dtype == "M8[ns]"
|
||
|
|
||
|
# roundtrip
|
||
|
td = timedelta(minutes=5, seconds=3)
|
||
|
resulta = df["A"] + td
|
||
|
resultb = resulta - td
|
||
|
tm.assert_series_equal(df["A"], resultb)
|
||
|
assert resultb.dtype == "M8[ns]"
|
||
|
|
||
|
# inplace
|
||
|
value = rs[2] + np.timedelta64(timedelta(minutes=5, seconds=1))
|
||
|
rs[2] += np.timedelta64(timedelta(minutes=5, seconds=1))
|
||
|
assert rs[2] == value
|
||
|
|
||
|
def test_timedelta64_ops_nat(self):
|
||
|
# GH 11349
|
||
|
timedelta_series = Series([NaT, Timedelta("1s")])
|
||
|
nat_series_dtype_timedelta = Series([NaT, NaT], dtype="timedelta64[ns]")
|
||
|
single_nat_dtype_timedelta = Series([NaT], dtype="timedelta64[ns]")
|
||
|
|
||
|
# subtraction
|
||
|
tm.assert_series_equal(timedelta_series - NaT, nat_series_dtype_timedelta)
|
||
|
tm.assert_series_equal(-NaT + timedelta_series, nat_series_dtype_timedelta)
|
||
|
|
||
|
tm.assert_series_equal(
|
||
|
timedelta_series - single_nat_dtype_timedelta, nat_series_dtype_timedelta
|
||
|
)
|
||
|
tm.assert_series_equal(
|
||
|
-single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta
|
||
|
)
|
||
|
|
||
|
# addition
|
||
|
tm.assert_series_equal(
|
||
|
nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta
|
||
|
)
|
||
|
tm.assert_series_equal(
|
||
|
NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta
|
||
|
)
|
||
|
|
||
|
tm.assert_series_equal(
|
||
|
nat_series_dtype_timedelta + single_nat_dtype_timedelta,
|
||
|
nat_series_dtype_timedelta,
|
||
|
)
|
||
|
tm.assert_series_equal(
|
||
|
single_nat_dtype_timedelta + nat_series_dtype_timedelta,
|
||
|
nat_series_dtype_timedelta,
|
||
|
)
|
||
|
|
||
|
tm.assert_series_equal(timedelta_series + NaT, nat_series_dtype_timedelta)
|
||
|
tm.assert_series_equal(NaT + timedelta_series, nat_series_dtype_timedelta)
|
||
|
|
||
|
tm.assert_series_equal(
|
||
|
timedelta_series + single_nat_dtype_timedelta, nat_series_dtype_timedelta
|
||
|
)
|
||
|
tm.assert_series_equal(
|
||
|
single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta
|
||
|
)
|
||
|
|
||
|
tm.assert_series_equal(
|
||
|
nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta
|
||
|
)
|
||
|
tm.assert_series_equal(
|
||
|
NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta
|
||
|
)
|
||
|
|
||
|
tm.assert_series_equal(
|
||
|
nat_series_dtype_timedelta + single_nat_dtype_timedelta,
|
||
|
nat_series_dtype_timedelta,
|
||
|
)
|
||
|
tm.assert_series_equal(
|
||
|
single_nat_dtype_timedelta + nat_series_dtype_timedelta,
|
||
|
nat_series_dtype_timedelta,
|
||
|
)
|
||
|
|
||
|
# multiplication
|
||
|
tm.assert_series_equal(
|
||
|
nat_series_dtype_timedelta * 1.0, nat_series_dtype_timedelta
|
||
|
)
|
||
|
tm.assert_series_equal(
|
||
|
1.0 * nat_series_dtype_timedelta, nat_series_dtype_timedelta
|
||
|
)
|
||
|
|
||
|
tm.assert_series_equal(timedelta_series * 1, timedelta_series)
|
||
|
tm.assert_series_equal(1 * timedelta_series, timedelta_series)
|
||
|
|
||
|
tm.assert_series_equal(timedelta_series * 1.5, Series([NaT, Timedelta("1.5s")]))
|
||
|
tm.assert_series_equal(1.5 * timedelta_series, Series([NaT, Timedelta("1.5s")]))
|
||
|
|
||
|
tm.assert_series_equal(timedelta_series * np.nan, nat_series_dtype_timedelta)
|
||
|
tm.assert_series_equal(np.nan * timedelta_series, nat_series_dtype_timedelta)
|
||
|
|
||
|
# division
|
||
|
tm.assert_series_equal(timedelta_series / 2, Series([NaT, Timedelta("0.5s")]))
|
||
|
tm.assert_series_equal(timedelta_series / 2.0, Series([NaT, Timedelta("0.5s")]))
|
||
|
tm.assert_series_equal(timedelta_series / np.nan, nat_series_dtype_timedelta)
|
||
|
|
||
|
# -------------------------------------------------------------
|
||
|
# Binary operations td64 arraylike and datetime-like
|
||
|
|
||
|
def test_td64arr_sub_timestamp_raises(self, box_with_array):
|
||
|
idx = TimedeltaIndex(["1 day", "2 day"])
|
||
|
idx = tm.box_expected(idx, box_with_array)
|
||
|
|
||
|
msg = (
|
||
|
"cannot subtract a datelike from|"
|
||
|
"Could not operate|"
|
||
|
"cannot perform operation"
|
||
|
)
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
idx - Timestamp("2011-01-01")
|
||
|
|
||
|
def test_td64arr_add_timestamp(self, box_with_array, tz_naive_fixture):
|
||
|
# GH#23215
|
||
|
|
||
|
# TODO: parametrize over scalar datetime types?
|
||
|
tz = tz_naive_fixture
|
||
|
other = Timestamp("2011-01-01", tz=tz)
|
||
|
|
||
|
idx = TimedeltaIndex(["1 day", "2 day"])
|
||
|
expected = DatetimeIndex(["2011-01-02", "2011-01-03"], tz=tz)
|
||
|
|
||
|
idx = tm.box_expected(idx, box_with_array)
|
||
|
expected = tm.box_expected(expected, box_with_array)
|
||
|
|
||
|
result = idx + other
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
result = other + idx
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"ts",
|
||
|
[
|
||
|
Timestamp("2012-01-01"),
|
||
|
Timestamp("2012-01-01").to_pydatetime(),
|
||
|
Timestamp("2012-01-01").to_datetime64(),
|
||
|
],
|
||
|
)
|
||
|
def test_td64arr_add_sub_datetimelike_scalar(self, ts, box_with_array):
|
||
|
# GH#11925, GH#29558
|
||
|
tdi = timedelta_range("1 day", periods=3)
|
||
|
expected = pd.date_range("2012-01-02", periods=3)
|
||
|
|
||
|
tdarr = tm.box_expected(tdi, box_with_array)
|
||
|
expected = tm.box_expected(expected, box_with_array)
|
||
|
|
||
|
tm.assert_equal(ts + tdarr, expected)
|
||
|
tm.assert_equal(tdarr + ts, expected)
|
||
|
|
||
|
expected2 = pd.date_range("2011-12-31", periods=3, freq="-1D")
|
||
|
expected2 = tm.box_expected(expected2, box_with_array)
|
||
|
|
||
|
tm.assert_equal(ts - tdarr, expected2)
|
||
|
tm.assert_equal(ts + (-tdarr), expected2)
|
||
|
|
||
|
msg = "cannot subtract a datelike"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
tdarr - ts
|
||
|
|
||
|
def test_tdi_sub_dt64_array(self, box_with_array):
|
||
|
dti = pd.date_range("2016-01-01", periods=3)
|
||
|
tdi = dti - dti.shift(1)
|
||
|
dtarr = dti.values
|
||
|
expected = pd.DatetimeIndex(dtarr) - tdi
|
||
|
|
||
|
tdi = tm.box_expected(tdi, box_with_array)
|
||
|
expected = tm.box_expected(expected, box_with_array)
|
||
|
|
||
|
msg = "cannot subtract a datelike from"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
tdi - dtarr
|
||
|
|
||
|
# TimedeltaIndex.__rsub__
|
||
|
result = dtarr - tdi
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
def test_tdi_add_dt64_array(self, box_with_array):
|
||
|
dti = pd.date_range("2016-01-01", periods=3)
|
||
|
tdi = dti - dti.shift(1)
|
||
|
dtarr = dti.values
|
||
|
expected = pd.DatetimeIndex(dtarr) + tdi
|
||
|
|
||
|
tdi = tm.box_expected(tdi, box_with_array)
|
||
|
expected = tm.box_expected(expected, box_with_array)
|
||
|
|
||
|
result = tdi + dtarr
|
||
|
tm.assert_equal(result, expected)
|
||
|
result = dtarr + tdi
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
def test_td64arr_add_datetime64_nat(self, box_with_array):
|
||
|
# GH#23215
|
||
|
other = np.datetime64("NaT")
|
||
|
|
||
|
tdi = timedelta_range("1 day", periods=3)
|
||
|
expected = pd.DatetimeIndex(["NaT", "NaT", "NaT"])
|
||
|
|
||
|
tdser = tm.box_expected(tdi, box_with_array)
|
||
|
expected = tm.box_expected(expected, box_with_array)
|
||
|
|
||
|
tm.assert_equal(tdser + other, expected)
|
||
|
tm.assert_equal(other + tdser, expected)
|
||
|
|
||
|
# ------------------------------------------------------------------
|
||
|
# Invalid __add__/__sub__ operations
|
||
|
|
||
|
@pytest.mark.parametrize("pi_freq", ["D", "W", "Q", "H"])
|
||
|
@pytest.mark.parametrize("tdi_freq", [None, "H"])
|
||
|
def test_td64arr_sub_periodlike(self, box_with_array, tdi_freq, pi_freq):
|
||
|
# GH#20049 subtracting PeriodIndex should raise TypeError
|
||
|
tdi = TimedeltaIndex(["1 hours", "2 hours"], freq=tdi_freq)
|
||
|
dti = Timestamp("2018-03-07 17:16:40") + tdi
|
||
|
pi = dti.to_period(pi_freq)
|
||
|
|
||
|
# TODO: parametrize over box for pi?
|
||
|
tdi = tm.box_expected(tdi, box_with_array)
|
||
|
msg = "cannot subtract|unsupported operand type"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
tdi - pi
|
||
|
|
||
|
# GH#13078 subtraction of Period scalar not supported
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
tdi - pi[0]
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"other",
|
||
|
[
|
||
|
# GH#12624 for str case
|
||
|
"a",
|
||
|
# GH#19123
|
||
|
1,
|
||
|
1.5,
|
||
|
np.array(2),
|
||
|
],
|
||
|
)
|
||
|
def test_td64arr_addsub_numeric_scalar_invalid(self, box_with_array, other):
|
||
|
# vector-like others are tested in test_td64arr_add_sub_numeric_arr_invalid
|
||
|
tdser = pd.Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]")
|
||
|
tdarr = tm.box_expected(tdser, box_with_array)
|
||
|
|
||
|
assert_invalid_addsub_type(tdarr, other)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"vec",
|
||
|
[
|
||
|
np.array([1, 2, 3]),
|
||
|
pd.Index([1, 2, 3]),
|
||
|
Series([1, 2, 3]),
|
||
|
DataFrame([[1, 2, 3]]),
|
||
|
],
|
||
|
ids=lambda x: type(x).__name__,
|
||
|
)
|
||
|
def test_td64arr_addsub_numeric_arr_invalid(
|
||
|
self, box_with_array, vec, any_real_dtype
|
||
|
):
|
||
|
tdser = pd.Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]")
|
||
|
tdarr = tm.box_expected(tdser, box_with_array)
|
||
|
|
||
|
vector = vec.astype(any_real_dtype)
|
||
|
assert_invalid_addsub_type(tdarr, vector)
|
||
|
|
||
|
def test_td64arr_add_sub_int(self, box_with_array, one):
|
||
|
# Variants of `one` for #19012, deprecated GH#22535
|
||
|
rng = timedelta_range("1 days 09:00:00", freq="H", periods=10)
|
||
|
tdarr = tm.box_expected(rng, box_with_array)
|
||
|
|
||
|
msg = "Addition/subtraction of integers"
|
||
|
assert_invalid_addsub_type(tdarr, one, msg)
|
||
|
|
||
|
# TOOD: get inplace ops into assert_invalid_addsub_type
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
tdarr += one
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
tdarr -= one
|
||
|
|
||
|
def test_td64arr_add_sub_integer_array(self, box_with_array):
|
||
|
# GH#19959, deprecated GH#22535
|
||
|
# GH#22696 for DataFrame case, check that we don't dispatch to numpy
|
||
|
# implementation, which treats int64 as m8[ns]
|
||
|
|
||
|
rng = timedelta_range("1 days 09:00:00", freq="H", periods=3)
|
||
|
tdarr = tm.box_expected(rng, box_with_array)
|
||
|
other = tm.box_expected([4, 3, 2], box_with_array)
|
||
|
|
||
|
msg = "Addition/subtraction of integers and integer-arrays"
|
||
|
assert_invalid_addsub_type(tdarr, other, msg)
|
||
|
|
||
|
def test_td64arr_addsub_integer_array_no_freq(self, box_with_array):
|
||
|
# GH#19959
|
||
|
tdi = TimedeltaIndex(["1 Day", "NaT", "3 Hours"])
|
||
|
tdarr = tm.box_expected(tdi, box_with_array)
|
||
|
other = tm.box_expected([14, -1, 16], box_with_array)
|
||
|
|
||
|
msg = "Addition/subtraction of integers"
|
||
|
assert_invalid_addsub_type(tdarr, other, msg)
|
||
|
|
||
|
# ------------------------------------------------------------------
|
||
|
# Operations with timedelta-like others
|
||
|
|
||
|
def test_td64arr_add_td64_array(self, box_with_array):
|
||
|
box = box_with_array
|
||
|
dti = pd.date_range("2016-01-01", periods=3)
|
||
|
tdi = dti - dti.shift(1)
|
||
|
tdarr = tdi.values
|
||
|
|
||
|
expected = 2 * tdi
|
||
|
tdi = tm.box_expected(tdi, box)
|
||
|
expected = tm.box_expected(expected, box)
|
||
|
|
||
|
result = tdi + tdarr
|
||
|
tm.assert_equal(result, expected)
|
||
|
result = tdarr + tdi
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
def test_td64arr_sub_td64_array(self, box_with_array):
|
||
|
box = box_with_array
|
||
|
dti = pd.date_range("2016-01-01", periods=3)
|
||
|
tdi = dti - dti.shift(1)
|
||
|
tdarr = tdi.values
|
||
|
|
||
|
expected = 0 * tdi
|
||
|
tdi = tm.box_expected(tdi, box)
|
||
|
expected = tm.box_expected(expected, box)
|
||
|
|
||
|
result = tdi - tdarr
|
||
|
tm.assert_equal(result, expected)
|
||
|
result = tdarr - tdi
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
def test_td64arr_add_sub_tdi(self, box_with_array, names):
|
||
|
# GH#17250 make sure result dtype is correct
|
||
|
# GH#19043 make sure names are propagated correctly
|
||
|
box = box_with_array
|
||
|
|
||
|
if box is pd.DataFrame and names[1] != names[0]:
|
||
|
pytest.skip(
|
||
|
"Name propagation for DataFrame does not behave like "
|
||
|
"it does for Index/Series"
|
||
|
)
|
||
|
|
||
|
tdi = TimedeltaIndex(["0 days", "1 day"], name=names[0])
|
||
|
tdi = np.array(tdi) if box is tm.to_array else tdi
|
||
|
ser = Series([Timedelta(hours=3), Timedelta(hours=4)], name=names[1])
|
||
|
expected = Series(
|
||
|
[Timedelta(hours=3), Timedelta(days=1, hours=4)], name=names[2]
|
||
|
)
|
||
|
|
||
|
ser = tm.box_expected(ser, box)
|
||
|
expected = tm.box_expected(expected, box)
|
||
|
|
||
|
result = tdi + ser
|
||
|
tm.assert_equal(result, expected)
|
||
|
assert_dtype(result, "timedelta64[ns]")
|
||
|
|
||
|
result = ser + tdi
|
||
|
tm.assert_equal(result, expected)
|
||
|
assert_dtype(result, "timedelta64[ns]")
|
||
|
|
||
|
expected = Series(
|
||
|
[Timedelta(hours=-3), Timedelta(days=1, hours=-4)], name=names[2]
|
||
|
)
|
||
|
expected = tm.box_expected(expected, box)
|
||
|
|
||
|
result = tdi - ser
|
||
|
tm.assert_equal(result, expected)
|
||
|
assert_dtype(result, "timedelta64[ns]")
|
||
|
|
||
|
result = ser - tdi
|
||
|
tm.assert_equal(result, -expected)
|
||
|
assert_dtype(result, "timedelta64[ns]")
|
||
|
|
||
|
def test_td64arr_add_sub_td64_nat(self, box_with_array):
|
||
|
# GH#23320 special handling for timedelta64("NaT")
|
||
|
box = box_with_array
|
||
|
tdi = pd.TimedeltaIndex([NaT, Timedelta("1s")])
|
||
|
other = np.timedelta64("NaT")
|
||
|
expected = pd.TimedeltaIndex(["NaT"] * 2)
|
||
|
|
||
|
obj = tm.box_expected(tdi, box)
|
||
|
expected = tm.box_expected(expected, box)
|
||
|
|
||
|
result = obj + other
|
||
|
tm.assert_equal(result, expected)
|
||
|
result = other + obj
|
||
|
tm.assert_equal(result, expected)
|
||
|
result = obj - other
|
||
|
tm.assert_equal(result, expected)
|
||
|
result = other - obj
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
def test_td64arr_sub_NaT(self, box_with_array):
|
||
|
# GH#18808
|
||
|
box = box_with_array
|
||
|
ser = Series([NaT, Timedelta("1s")])
|
||
|
expected = Series([NaT, NaT], dtype="timedelta64[ns]")
|
||
|
|
||
|
ser = tm.box_expected(ser, box)
|
||
|
expected = tm.box_expected(expected, box)
|
||
|
|
||
|
res = ser - pd.NaT
|
||
|
tm.assert_equal(res, expected)
|
||
|
|
||
|
def test_td64arr_add_timedeltalike(self, two_hours, box_with_array):
|
||
|
# only test adding/sub offsets as + is now numeric
|
||
|
# GH#10699 for Tick cases
|
||
|
box = box_with_array
|
||
|
rng = timedelta_range("1 days", "10 days")
|
||
|
expected = timedelta_range("1 days 02:00:00", "10 days 02:00:00", freq="D")
|
||
|
rng = tm.box_expected(rng, box)
|
||
|
expected = tm.box_expected(expected, box)
|
||
|
|
||
|
result = rng + two_hours
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
result = two_hours + rng
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
def test_td64arr_sub_timedeltalike(self, two_hours, box_with_array):
|
||
|
# only test adding/sub offsets as - is now numeric
|
||
|
# GH#10699 for Tick cases
|
||
|
box = box_with_array
|
||
|
rng = timedelta_range("1 days", "10 days")
|
||
|
expected = timedelta_range("0 days 22:00:00", "9 days 22:00:00")
|
||
|
|
||
|
rng = tm.box_expected(rng, box)
|
||
|
expected = tm.box_expected(expected, box)
|
||
|
|
||
|
result = rng - two_hours
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
result = two_hours - rng
|
||
|
tm.assert_equal(result, -expected)
|
||
|
|
||
|
# ------------------------------------------------------------------
|
||
|
# __add__/__sub__ with DateOffsets and arrays of DateOffsets
|
||
|
|
||
|
def test_td64arr_add_offset_index(self, names, box_with_array):
|
||
|
# GH#18849, GH#19744
|
||
|
box = box_with_array
|
||
|
|
||
|
if box is pd.DataFrame and names[1] != names[0]:
|
||
|
pytest.skip(
|
||
|
"Name propagation for DataFrame does not behave like "
|
||
|
"it does for Index/Series"
|
||
|
)
|
||
|
|
||
|
tdi = TimedeltaIndex(["1 days 00:00:00", "3 days 04:00:00"], name=names[0])
|
||
|
other = pd.Index([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)], name=names[1])
|
||
|
other = np.array(other) if box is tm.to_array else other
|
||
|
|
||
|
expected = TimedeltaIndex(
|
||
|
[tdi[n] + other[n] for n in range(len(tdi))], freq="infer", name=names[2]
|
||
|
)
|
||
|
tdi = tm.box_expected(tdi, box)
|
||
|
expected = tm.box_expected(expected, box)
|
||
|
|
||
|
with tm.assert_produces_warning(PerformanceWarning):
|
||
|
res = tdi + other
|
||
|
tm.assert_equal(res, expected)
|
||
|
|
||
|
with tm.assert_produces_warning(PerformanceWarning):
|
||
|
res2 = other + tdi
|
||
|
tm.assert_equal(res2, expected)
|
||
|
|
||
|
# TODO: combine with test_td64arr_add_offset_index by parametrizing
|
||
|
# over second box?
|
||
|
def test_td64arr_add_offset_array(self, box_with_array):
|
||
|
# GH#18849
|
||
|
box = box_with_array
|
||
|
tdi = TimedeltaIndex(["1 days 00:00:00", "3 days 04:00:00"])
|
||
|
other = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)])
|
||
|
|
||
|
expected = TimedeltaIndex(
|
||
|
[tdi[n] + other[n] for n in range(len(tdi))], freq="infer"
|
||
|
)
|
||
|
|
||
|
tdi = tm.box_expected(tdi, box)
|
||
|
expected = tm.box_expected(expected, box)
|
||
|
|
||
|
with tm.assert_produces_warning(PerformanceWarning):
|
||
|
res = tdi + other
|
||
|
tm.assert_equal(res, expected)
|
||
|
|
||
|
with tm.assert_produces_warning(PerformanceWarning):
|
||
|
res2 = other + tdi
|
||
|
tm.assert_equal(res2, expected)
|
||
|
|
||
|
def test_td64arr_sub_offset_index(self, names, box_with_array):
|
||
|
# GH#18824, GH#19744
|
||
|
box = box_with_array
|
||
|
xbox = box if box is not tm.to_array else pd.Index
|
||
|
exname = names[2] if box is not tm.to_array else names[1]
|
||
|
|
||
|
if box is pd.DataFrame and names[1] != names[0]:
|
||
|
pytest.skip(
|
||
|
"Name propagation for DataFrame does not behave like "
|
||
|
"it does for Index/Series"
|
||
|
)
|
||
|
|
||
|
tdi = TimedeltaIndex(["1 days 00:00:00", "3 days 04:00:00"], name=names[0])
|
||
|
other = pd.Index([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)], name=names[1])
|
||
|
|
||
|
expected = TimedeltaIndex(
|
||
|
[tdi[n] - other[n] for n in range(len(tdi))], freq="infer", name=exname
|
||
|
)
|
||
|
|
||
|
tdi = tm.box_expected(tdi, box)
|
||
|
expected = tm.box_expected(expected, xbox)
|
||
|
|
||
|
with tm.assert_produces_warning(PerformanceWarning):
|
||
|
res = tdi - other
|
||
|
tm.assert_equal(res, expected)
|
||
|
|
||
|
def test_td64arr_sub_offset_array(self, box_with_array):
|
||
|
# GH#18824
|
||
|
tdi = TimedeltaIndex(["1 days 00:00:00", "3 days 04:00:00"])
|
||
|
other = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)])
|
||
|
|
||
|
expected = TimedeltaIndex(
|
||
|
[tdi[n] - other[n] for n in range(len(tdi))], freq="infer"
|
||
|
)
|
||
|
|
||
|
tdi = tm.box_expected(tdi, box_with_array)
|
||
|
expected = tm.box_expected(expected, box_with_array)
|
||
|
|
||
|
with tm.assert_produces_warning(PerformanceWarning):
|
||
|
res = tdi - other
|
||
|
tm.assert_equal(res, expected)
|
||
|
|
||
|
def test_td64arr_with_offset_series(self, names, box_with_array):
|
||
|
# GH#18849
|
||
|
box = box_with_array
|
||
|
box2 = Series if box in [pd.Index, tm.to_array] else box
|
||
|
|
||
|
if box is pd.DataFrame:
|
||
|
# Since we are operating with a DataFrame and a non-DataFrame,
|
||
|
# the non-DataFrame is cast to Series and its name ignored.
|
||
|
exname = names[0]
|
||
|
elif box is tm.to_array:
|
||
|
exname = names[1]
|
||
|
else:
|
||
|
exname = names[2]
|
||
|
|
||
|
tdi = TimedeltaIndex(["1 days 00:00:00", "3 days 04:00:00"], name=names[0])
|
||
|
other = Series([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)], name=names[1])
|
||
|
|
||
|
expected_add = Series([tdi[n] + other[n] for n in range(len(tdi))], name=exname)
|
||
|
obj = tm.box_expected(tdi, box)
|
||
|
expected_add = tm.box_expected(expected_add, box2)
|
||
|
|
||
|
with tm.assert_produces_warning(PerformanceWarning):
|
||
|
res = obj + other
|
||
|
tm.assert_equal(res, expected_add)
|
||
|
|
||
|
with tm.assert_produces_warning(PerformanceWarning):
|
||
|
res2 = other + obj
|
||
|
tm.assert_equal(res2, expected_add)
|
||
|
|
||
|
expected_sub = Series([tdi[n] - other[n] for n in range(len(tdi))], name=exname)
|
||
|
expected_sub = tm.box_expected(expected_sub, box2)
|
||
|
|
||
|
with tm.assert_produces_warning(PerformanceWarning):
|
||
|
res3 = obj - other
|
||
|
tm.assert_equal(res3, expected_sub)
|
||
|
|
||
|
@pytest.mark.parametrize("obox", [np.array, pd.Index, pd.Series])
|
||
|
def test_td64arr_addsub_anchored_offset_arraylike(self, obox, box_with_array):
|
||
|
# GH#18824
|
||
|
tdi = TimedeltaIndex(["1 days 00:00:00", "3 days 04:00:00"])
|
||
|
tdi = tm.box_expected(tdi, box_with_array)
|
||
|
|
||
|
anchored = obox([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)])
|
||
|
|
||
|
# addition/subtraction ops with anchored offsets should issue
|
||
|
# a PerformanceWarning and _then_ raise a TypeError.
|
||
|
msg = "has incorrect type|cannot add the type MonthEnd"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
with tm.assert_produces_warning(PerformanceWarning):
|
||
|
tdi + anchored
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
with tm.assert_produces_warning(PerformanceWarning):
|
||
|
anchored + tdi
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
with tm.assert_produces_warning(PerformanceWarning):
|
||
|
tdi - anchored
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
with tm.assert_produces_warning(PerformanceWarning):
|
||
|
anchored - tdi
|
||
|
|
||
|
# ------------------------------------------------------------------
|
||
|
# Unsorted
|
||
|
|
||
|
def test_td64arr_add_sub_object_array(self, box_with_array):
|
||
|
tdi = pd.timedelta_range("1 day", periods=3, freq="D")
|
||
|
tdarr = tm.box_expected(tdi, box_with_array)
|
||
|
|
||
|
other = np.array(
|
||
|
[pd.Timedelta(days=1), pd.offsets.Day(2), pd.Timestamp("2000-01-04")]
|
||
|
)
|
||
|
|
||
|
with tm.assert_produces_warning(PerformanceWarning):
|
||
|
result = tdarr + other
|
||
|
|
||
|
expected = pd.Index(
|
||
|
[pd.Timedelta(days=2), pd.Timedelta(days=4), pd.Timestamp("2000-01-07")]
|
||
|
)
|
||
|
expected = tm.box_expected(expected, box_with_array)
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
msg = "unsupported operand type|cannot subtract a datelike"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
with tm.assert_produces_warning(PerformanceWarning):
|
||
|
tdarr - other
|
||
|
|
||
|
with tm.assert_produces_warning(PerformanceWarning):
|
||
|
result = other - tdarr
|
||
|
|
||
|
expected = pd.Index(
|
||
|
[pd.Timedelta(0), pd.Timedelta(0), pd.Timestamp("2000-01-01")]
|
||
|
)
|
||
|
expected = tm.box_expected(expected, box_with_array)
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
|
||
|
class TestTimedeltaArraylikeMulDivOps:
|
||
|
# Tests for timedelta64[ns]
|
||
|
# __mul__, __rmul__, __div__, __rdiv__, __floordiv__, __rfloordiv__
|
||
|
|
||
|
# ------------------------------------------------------------------
|
||
|
# Multiplication
|
||
|
# organized with scalar others first, then array-like
|
||
|
|
||
|
def test_td64arr_mul_int(self, box_with_array):
|
||
|
idx = TimedeltaIndex(np.arange(5, dtype="int64"))
|
||
|
idx = tm.box_expected(idx, box_with_array)
|
||
|
|
||
|
result = idx * 1
|
||
|
tm.assert_equal(result, idx)
|
||
|
|
||
|
result = 1 * idx
|
||
|
tm.assert_equal(result, idx)
|
||
|
|
||
|
def test_td64arr_mul_tdlike_scalar_raises(self, two_hours, box_with_array):
|
||
|
rng = timedelta_range("1 days", "10 days", name="foo")
|
||
|
rng = tm.box_expected(rng, box_with_array)
|
||
|
msg = "argument must be an integer|cannot use operands with types dtype"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
rng * two_hours
|
||
|
|
||
|
def test_tdi_mul_int_array_zerodim(self, box_with_array):
|
||
|
rng5 = np.arange(5, dtype="int64")
|
||
|
idx = TimedeltaIndex(rng5)
|
||
|
expected = TimedeltaIndex(rng5 * 5)
|
||
|
|
||
|
idx = tm.box_expected(idx, box_with_array)
|
||
|
expected = tm.box_expected(expected, box_with_array)
|
||
|
|
||
|
result = idx * np.array(5, dtype="int64")
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
def test_tdi_mul_int_array(self, box_with_array):
|
||
|
rng5 = np.arange(5, dtype="int64")
|
||
|
idx = TimedeltaIndex(rng5)
|
||
|
expected = TimedeltaIndex(rng5 ** 2)
|
||
|
|
||
|
idx = tm.box_expected(idx, box_with_array)
|
||
|
expected = tm.box_expected(expected, box_with_array)
|
||
|
|
||
|
result = idx * rng5
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
def test_tdi_mul_int_series(self, box_with_array):
|
||
|
box = box_with_array
|
||
|
xbox = pd.Series if box in [pd.Index, tm.to_array] else box
|
||
|
|
||
|
idx = TimedeltaIndex(np.arange(5, dtype="int64"))
|
||
|
expected = TimedeltaIndex(np.arange(5, dtype="int64") ** 2)
|
||
|
|
||
|
idx = tm.box_expected(idx, box)
|
||
|
expected = tm.box_expected(expected, xbox)
|
||
|
|
||
|
result = idx * pd.Series(np.arange(5, dtype="int64"))
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
def test_tdi_mul_float_series(self, box_with_array):
|
||
|
box = box_with_array
|
||
|
xbox = pd.Series if box in [pd.Index, tm.to_array] else box
|
||
|
|
||
|
idx = TimedeltaIndex(np.arange(5, dtype="int64"))
|
||
|
idx = tm.box_expected(idx, box)
|
||
|
|
||
|
rng5f = np.arange(5, dtype="float64")
|
||
|
expected = TimedeltaIndex(rng5f * (rng5f + 1.0))
|
||
|
expected = tm.box_expected(expected, xbox)
|
||
|
|
||
|
result = idx * Series(rng5f + 1.0)
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
# TODO: Put Series/DataFrame in others?
|
||
|
@pytest.mark.parametrize(
|
||
|
"other",
|
||
|
[
|
||
|
np.arange(1, 11),
|
||
|
pd.Int64Index(range(1, 11)),
|
||
|
pd.UInt64Index(range(1, 11)),
|
||
|
pd.Float64Index(range(1, 11)),
|
||
|
pd.RangeIndex(1, 11),
|
||
|
],
|
||
|
ids=lambda x: type(x).__name__,
|
||
|
)
|
||
|
def test_tdi_rmul_arraylike(self, other, box_with_array):
|
||
|
box = box_with_array
|
||
|
xbox = get_upcast_box(box, other)
|
||
|
|
||
|
tdi = TimedeltaIndex(["1 Day"] * 10)
|
||
|
expected = timedelta_range("1 days", "10 days")
|
||
|
expected._data.freq = None
|
||
|
|
||
|
tdi = tm.box_expected(tdi, box)
|
||
|
expected = tm.box_expected(expected, xbox)
|
||
|
|
||
|
result = other * tdi
|
||
|
tm.assert_equal(result, expected)
|
||
|
commute = tdi * other
|
||
|
tm.assert_equal(commute, expected)
|
||
|
|
||
|
# ------------------------------------------------------------------
|
||
|
# __div__, __rdiv__
|
||
|
|
||
|
def test_td64arr_div_nat_invalid(self, box_with_array):
|
||
|
# don't allow division by NaT (maybe could in the future)
|
||
|
rng = timedelta_range("1 days", "10 days", name="foo")
|
||
|
rng = tm.box_expected(rng, box_with_array)
|
||
|
|
||
|
with pytest.raises(TypeError, match="unsupported operand type"):
|
||
|
rng / pd.NaT
|
||
|
with pytest.raises(TypeError, match="Cannot divide NaTType by"):
|
||
|
pd.NaT / rng
|
||
|
|
||
|
def test_td64arr_div_td64nat(self, box_with_array):
|
||
|
# GH#23829
|
||
|
rng = timedelta_range("1 days", "10 days")
|
||
|
rng = tm.box_expected(rng, box_with_array)
|
||
|
|
||
|
other = np.timedelta64("NaT")
|
||
|
|
||
|
expected = np.array([np.nan] * 10)
|
||
|
expected = tm.box_expected(expected, box_with_array)
|
||
|
|
||
|
result = rng / other
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
result = other / rng
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
def test_td64arr_div_int(self, box_with_array):
|
||
|
idx = TimedeltaIndex(np.arange(5, dtype="int64"))
|
||
|
idx = tm.box_expected(idx, box_with_array)
|
||
|
|
||
|
result = idx / 1
|
||
|
tm.assert_equal(result, idx)
|
||
|
|
||
|
with pytest.raises(TypeError, match="Cannot divide"):
|
||
|
# GH#23829
|
||
|
1 / idx
|
||
|
|
||
|
def test_td64arr_div_tdlike_scalar(self, two_hours, box_with_array):
|
||
|
# GH#20088, GH#22163 ensure DataFrame returns correct dtype
|
||
|
rng = timedelta_range("1 days", "10 days", name="foo")
|
||
|
expected = pd.Float64Index((np.arange(10) + 1) * 12, name="foo")
|
||
|
|
||
|
rng = tm.box_expected(rng, box_with_array)
|
||
|
expected = tm.box_expected(expected, box_with_array)
|
||
|
|
||
|
result = rng / two_hours
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
result = two_hours / rng
|
||
|
expected = 1 / expected
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
@pytest.mark.parametrize("m", [1, 3, 10])
|
||
|
@pytest.mark.parametrize("unit", ["D", "h", "m", "s", "ms", "us", "ns"])
|
||
|
def test_td64arr_div_td64_scalar(self, m, unit, box_with_array):
|
||
|
startdate = Series(pd.date_range("2013-01-01", "2013-01-03"))
|
||
|
enddate = Series(pd.date_range("2013-03-01", "2013-03-03"))
|
||
|
|
||
|
ser = enddate - startdate
|
||
|
ser[2] = np.nan
|
||
|
flat = ser
|
||
|
ser = tm.box_expected(ser, box_with_array)
|
||
|
|
||
|
# op
|
||
|
expected = Series([x / np.timedelta64(m, unit) for x in flat])
|
||
|
expected = tm.box_expected(expected, box_with_array)
|
||
|
result = ser / np.timedelta64(m, unit)
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
# reverse op
|
||
|
expected = Series([Timedelta(np.timedelta64(m, unit)) / x for x in flat])
|
||
|
expected = tm.box_expected(expected, box_with_array)
|
||
|
result = np.timedelta64(m, unit) / ser
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
def test_td64arr_div_tdlike_scalar_with_nat(self, two_hours, box_with_array):
|
||
|
rng = TimedeltaIndex(["1 days", pd.NaT, "2 days"], name="foo")
|
||
|
expected = pd.Float64Index([12, np.nan, 24], name="foo")
|
||
|
|
||
|
rng = tm.box_expected(rng, box_with_array)
|
||
|
expected = tm.box_expected(expected, box_with_array)
|
||
|
|
||
|
result = rng / two_hours
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
result = two_hours / rng
|
||
|
expected = 1 / expected
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
def test_td64arr_div_td64_ndarray(self, box_with_array):
|
||
|
# GH#22631
|
||
|
rng = TimedeltaIndex(["1 days", pd.NaT, "2 days"])
|
||
|
expected = pd.Float64Index([12, np.nan, 24])
|
||
|
|
||
|
rng = tm.box_expected(rng, box_with_array)
|
||
|
expected = tm.box_expected(expected, box_with_array)
|
||
|
|
||
|
other = np.array([2, 4, 2], dtype="m8[h]")
|
||
|
result = rng / other
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
result = rng / tm.box_expected(other, box_with_array)
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
result = rng / other.astype(object)
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
result = rng / list(other)
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
# reversed op
|
||
|
expected = 1 / expected
|
||
|
result = other / rng
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
result = tm.box_expected(other, box_with_array) / rng
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
result = other.astype(object) / rng
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
result = list(other) / rng
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
def test_tdarr_div_length_mismatch(self, box_with_array):
|
||
|
rng = TimedeltaIndex(["1 days", pd.NaT, "2 days"])
|
||
|
mismatched = [1, 2, 3, 4]
|
||
|
|
||
|
rng = tm.box_expected(rng, box_with_array)
|
||
|
msg = "Cannot divide vectors|Unable to coerce to Series"
|
||
|
for obj in [mismatched, mismatched[:2]]:
|
||
|
# one shorter, one longer
|
||
|
for other in [obj, np.array(obj), pd.Index(obj)]:
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
rng / other
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
other / rng
|
||
|
|
||
|
# ------------------------------------------------------------------
|
||
|
# __floordiv__, __rfloordiv__
|
||
|
|
||
|
def test_td64arr_floordiv_tdscalar(self, box_with_array, scalar_td):
|
||
|
# GH#18831
|
||
|
td1 = Series([timedelta(minutes=5, seconds=3)] * 3)
|
||
|
td1.iloc[2] = np.nan
|
||
|
|
||
|
expected = Series([0, 0, np.nan])
|
||
|
|
||
|
td1 = tm.box_expected(td1, box_with_array, transpose=False)
|
||
|
expected = tm.box_expected(expected, box_with_array, transpose=False)
|
||
|
|
||
|
result = td1 // scalar_td
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
def test_td64arr_rfloordiv_tdscalar(self, box_with_array, scalar_td):
|
||
|
# GH#18831
|
||
|
td1 = Series([timedelta(minutes=5, seconds=3)] * 3)
|
||
|
td1.iloc[2] = np.nan
|
||
|
|
||
|
expected = Series([1, 1, np.nan])
|
||
|
|
||
|
td1 = tm.box_expected(td1, box_with_array, transpose=False)
|
||
|
expected = tm.box_expected(expected, box_with_array, transpose=False)
|
||
|
|
||
|
result = scalar_td // td1
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
def test_td64arr_rfloordiv_tdscalar_explicit(self, box_with_array, scalar_td):
|
||
|
# GH#18831
|
||
|
td1 = Series([timedelta(minutes=5, seconds=3)] * 3)
|
||
|
td1.iloc[2] = np.nan
|
||
|
|
||
|
expected = Series([1, 1, np.nan])
|
||
|
|
||
|
td1 = tm.box_expected(td1, box_with_array, transpose=False)
|
||
|
expected = tm.box_expected(expected, box_with_array, transpose=False)
|
||
|
|
||
|
# We can test __rfloordiv__ using this syntax,
|
||
|
# see `test_timedelta_rfloordiv`
|
||
|
result = td1.__rfloordiv__(scalar_td)
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
def test_td64arr_floordiv_int(self, box_with_array):
|
||
|
idx = TimedeltaIndex(np.arange(5, dtype="int64"))
|
||
|
idx = tm.box_expected(idx, box_with_array)
|
||
|
result = idx // 1
|
||
|
tm.assert_equal(result, idx)
|
||
|
|
||
|
pattern = "floor_divide cannot use operands|Cannot divide int by Timedelta*"
|
||
|
with pytest.raises(TypeError, match=pattern):
|
||
|
1 // idx
|
||
|
|
||
|
def test_td64arr_floordiv_tdlike_scalar(self, two_hours, box_with_array):
|
||
|
tdi = timedelta_range("1 days", "10 days", name="foo")
|
||
|
expected = pd.Int64Index((np.arange(10) + 1) * 12, name="foo")
|
||
|
|
||
|
tdi = tm.box_expected(tdi, box_with_array)
|
||
|
expected = tm.box_expected(expected, box_with_array)
|
||
|
|
||
|
result = tdi // two_hours
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
# TODO: Is this redundant with test_td64arr_floordiv_tdlike_scalar?
|
||
|
@pytest.mark.parametrize(
|
||
|
"scalar_td",
|
||
|
[
|
||
|
timedelta(minutes=10, seconds=7),
|
||
|
Timedelta("10m7s"),
|
||
|
Timedelta("10m7s").to_timedelta64(),
|
||
|
],
|
||
|
ids=lambda x: type(x).__name__,
|
||
|
)
|
||
|
def test_td64arr_rfloordiv_tdlike_scalar(self, scalar_td, box_with_array):
|
||
|
# GH#19125
|
||
|
tdi = TimedeltaIndex(["00:05:03", "00:05:03", pd.NaT], freq=None)
|
||
|
expected = pd.Index([2.0, 2.0, np.nan])
|
||
|
|
||
|
tdi = tm.box_expected(tdi, box_with_array, transpose=False)
|
||
|
expected = tm.box_expected(expected, box_with_array, transpose=False)
|
||
|
|
||
|
res = tdi.__rfloordiv__(scalar_td)
|
||
|
tm.assert_equal(res, expected)
|
||
|
|
||
|
expected = pd.Index([0.0, 0.0, np.nan])
|
||
|
expected = tm.box_expected(expected, box_with_array, transpose=False)
|
||
|
|
||
|
res = tdi // (scalar_td)
|
||
|
tm.assert_equal(res, expected)
|
||
|
|
||
|
# ------------------------------------------------------------------
|
||
|
# mod, divmod
|
||
|
# TODO: operations with timedelta-like arrays, numeric arrays,
|
||
|
# reversed ops
|
||
|
|
||
|
def test_td64arr_mod_tdscalar(self, box_with_array, three_days):
|
||
|
tdi = timedelta_range("1 Day", "9 days")
|
||
|
tdarr = tm.box_expected(tdi, box_with_array)
|
||
|
|
||
|
expected = TimedeltaIndex(["1 Day", "2 Days", "0 Days"] * 3)
|
||
|
expected = tm.box_expected(expected, box_with_array)
|
||
|
|
||
|
result = tdarr % three_days
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
if box_with_array is pd.DataFrame:
|
||
|
pytest.xfail("DataFrame does not have __divmod__ or __rdivmod__")
|
||
|
|
||
|
result = divmod(tdarr, three_days)
|
||
|
tm.assert_equal(result[1], expected)
|
||
|
tm.assert_equal(result[0], tdarr // three_days)
|
||
|
|
||
|
def test_td64arr_mod_int(self, box_with_array):
|
||
|
tdi = timedelta_range("1 ns", "10 ns", periods=10)
|
||
|
tdarr = tm.box_expected(tdi, box_with_array)
|
||
|
|
||
|
expected = TimedeltaIndex(["1 ns", "0 ns"] * 5)
|
||
|
expected = tm.box_expected(expected, box_with_array)
|
||
|
|
||
|
result = tdarr % 2
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
msg = "Cannot divide int by"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
2 % tdarr
|
||
|
|
||
|
if box_with_array is pd.DataFrame:
|
||
|
pytest.xfail("DataFrame does not have __divmod__ or __rdivmod__")
|
||
|
|
||
|
result = divmod(tdarr, 2)
|
||
|
tm.assert_equal(result[1], expected)
|
||
|
tm.assert_equal(result[0], tdarr // 2)
|
||
|
|
||
|
def test_td64arr_rmod_tdscalar(self, box_with_array, three_days):
|
||
|
tdi = timedelta_range("1 Day", "9 days")
|
||
|
tdarr = tm.box_expected(tdi, box_with_array)
|
||
|
|
||
|
expected = ["0 Days", "1 Day", "0 Days"] + ["3 Days"] * 6
|
||
|
expected = TimedeltaIndex(expected)
|
||
|
expected = tm.box_expected(expected, box_with_array)
|
||
|
|
||
|
result = three_days % tdarr
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
if box_with_array is pd.DataFrame:
|
||
|
pytest.xfail("DataFrame does not have __divmod__ or __rdivmod__")
|
||
|
|
||
|
result = divmod(three_days, tdarr)
|
||
|
tm.assert_equal(result[1], expected)
|
||
|
tm.assert_equal(result[0], three_days // tdarr)
|
||
|
|
||
|
# ------------------------------------------------------------------
|
||
|
# Operations with invalid others
|
||
|
|
||
|
def test_td64arr_mul_tdscalar_invalid(self, box_with_array, scalar_td):
|
||
|
td1 = Series([timedelta(minutes=5, seconds=3)] * 3)
|
||
|
td1.iloc[2] = np.nan
|
||
|
|
||
|
td1 = tm.box_expected(td1, box_with_array)
|
||
|
|
||
|
# check that we are getting a TypeError
|
||
|
# with 'operate' (from core/ops.py) for the ops that are not
|
||
|
# defined
|
||
|
pattern = "operate|unsupported|cannot|not supported"
|
||
|
with pytest.raises(TypeError, match=pattern):
|
||
|
td1 * scalar_td
|
||
|
with pytest.raises(TypeError, match=pattern):
|
||
|
scalar_td * td1
|
||
|
|
||
|
def test_td64arr_mul_too_short_raises(self, box_with_array):
|
||
|
idx = TimedeltaIndex(np.arange(5, dtype="int64"))
|
||
|
idx = tm.box_expected(idx, box_with_array)
|
||
|
msg = (
|
||
|
"cannot use operands with types dtype|"
|
||
|
"Cannot multiply with unequal lengths|"
|
||
|
"Unable to coerce to Series"
|
||
|
)
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
# length check before dtype check
|
||
|
idx * idx[:3]
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
idx * np.array([1, 2])
|
||
|
|
||
|
def test_td64arr_mul_td64arr_raises(self, box_with_array):
|
||
|
idx = TimedeltaIndex(np.arange(5, dtype="int64"))
|
||
|
idx = tm.box_expected(idx, box_with_array)
|
||
|
msg = "cannot use operands with types dtype"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
idx * idx
|
||
|
|
||
|
# ------------------------------------------------------------------
|
||
|
# Operations with numeric others
|
||
|
|
||
|
def test_td64arr_mul_numeric_scalar(self, box_with_array, one):
|
||
|
# GH#4521
|
||
|
# divide/multiply by integers
|
||
|
tdser = pd.Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]")
|
||
|
expected = Series(["-59 Days", "-59 Days", "NaT"], dtype="timedelta64[ns]")
|
||
|
|
||
|
tdser = tm.box_expected(tdser, box_with_array)
|
||
|
expected = tm.box_expected(expected, box_with_array)
|
||
|
|
||
|
result = tdser * (-one)
|
||
|
tm.assert_equal(result, expected)
|
||
|
result = (-one) * tdser
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
expected = Series(["118 Days", "118 Days", "NaT"], dtype="timedelta64[ns]")
|
||
|
expected = tm.box_expected(expected, box_with_array)
|
||
|
|
||
|
result = tdser * (2 * one)
|
||
|
tm.assert_equal(result, expected)
|
||
|
result = (2 * one) * tdser
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
@pytest.mark.parametrize("two", [2, 2.0, np.array(2), np.array(2.0)])
|
||
|
def test_td64arr_div_numeric_scalar(self, box_with_array, two):
|
||
|
# GH#4521
|
||
|
# divide/multiply by integers
|
||
|
tdser = pd.Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]")
|
||
|
expected = Series(["29.5D", "29.5D", "NaT"], dtype="timedelta64[ns]")
|
||
|
|
||
|
tdser = tm.box_expected(tdser, box_with_array)
|
||
|
expected = tm.box_expected(expected, box_with_array)
|
||
|
|
||
|
result = tdser / two
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
with pytest.raises(TypeError, match="Cannot divide"):
|
||
|
two / tdser
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"vector",
|
||
|
[np.array([20, 30, 40]), pd.Index([20, 30, 40]), Series([20, 30, 40])],
|
||
|
ids=lambda x: type(x).__name__,
|
||
|
)
|
||
|
def test_td64arr_rmul_numeric_array(self, box_with_array, vector, any_real_dtype):
|
||
|
# GH#4521
|
||
|
# divide/multiply by integers
|
||
|
xbox = get_upcast_box(box_with_array, vector)
|
||
|
|
||
|
tdser = pd.Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]")
|
||
|
vector = vector.astype(any_real_dtype)
|
||
|
|
||
|
expected = Series(["1180 Days", "1770 Days", "NaT"], dtype="timedelta64[ns]")
|
||
|
|
||
|
tdser = tm.box_expected(tdser, box_with_array)
|
||
|
expected = tm.box_expected(expected, xbox)
|
||
|
|
||
|
result = tdser * vector
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
result = vector * tdser
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"vector",
|
||
|
[np.array([20, 30, 40]), pd.Index([20, 30, 40]), Series([20, 30, 40])],
|
||
|
ids=lambda x: type(x).__name__,
|
||
|
)
|
||
|
def test_td64arr_div_numeric_array(self, box_with_array, vector, any_real_dtype):
|
||
|
# GH#4521
|
||
|
# divide/multiply by integers
|
||
|
xbox = get_upcast_box(box_with_array, vector)
|
||
|
|
||
|
tdser = pd.Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]")
|
||
|
vector = vector.astype(any_real_dtype)
|
||
|
|
||
|
expected = Series(["2.95D", "1D 23H 12m", "NaT"], dtype="timedelta64[ns]")
|
||
|
|
||
|
tdser = tm.box_expected(tdser, box_with_array)
|
||
|
expected = tm.box_expected(expected, xbox)
|
||
|
|
||
|
result = tdser / vector
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
pattern = (
|
||
|
"true_divide'? cannot use operands|"
|
||
|
"cannot perform __div__|"
|
||
|
"cannot perform __truediv__|"
|
||
|
"unsupported operand|"
|
||
|
"Cannot divide"
|
||
|
)
|
||
|
with pytest.raises(TypeError, match=pattern):
|
||
|
vector / tdser
|
||
|
|
||
|
if not isinstance(vector, pd.Index):
|
||
|
# Index.__rdiv__ won't try to operate elementwise, just raises
|
||
|
result = tdser / vector.astype(object)
|
||
|
if box_with_array is pd.DataFrame:
|
||
|
expected = [tdser.iloc[0, n] / vector[n] for n in range(len(vector))]
|
||
|
else:
|
||
|
expected = [tdser[n] / vector[n] for n in range(len(tdser))]
|
||
|
expected = pd.Index(expected) # do dtype inference
|
||
|
expected = tm.box_expected(expected, xbox)
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
with pytest.raises(TypeError, match=pattern):
|
||
|
vector.astype(object) / tdser
|
||
|
|
||
|
def test_td64arr_mul_int_series(self, box_with_array, names, request):
|
||
|
# GH#19042 test for correct name attachment
|
||
|
box = box_with_array
|
||
|
if box_with_array is pd.DataFrame and names[2] is None:
|
||
|
reason = "broadcasts along wrong axis, but doesn't raise"
|
||
|
request.node.add_marker(pytest.mark.xfail(reason=reason))
|
||
|
|
||
|
exname = names[2] if box is not tm.to_array else names[1]
|
||
|
|
||
|
tdi = TimedeltaIndex(
|
||
|
["0days", "1day", "2days", "3days", "4days"], name=names[0]
|
||
|
)
|
||
|
# TODO: Should we be parametrizing over types for `ser` too?
|
||
|
ser = Series([0, 1, 2, 3, 4], dtype=np.int64, name=names[1])
|
||
|
|
||
|
expected = Series(
|
||
|
["0days", "1day", "4days", "9days", "16days"],
|
||
|
dtype="timedelta64[ns]",
|
||
|
name=exname,
|
||
|
)
|
||
|
|
||
|
tdi = tm.box_expected(tdi, box)
|
||
|
box = Series if (box is pd.Index or box is tm.to_array) else box
|
||
|
expected = tm.box_expected(expected, box)
|
||
|
|
||
|
result = ser * tdi
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
# The direct operation tdi * ser still needs to be fixed.
|
||
|
result = ser.__rmul__(tdi)
|
||
|
if box is pd.DataFrame:
|
||
|
assert result is NotImplemented
|
||
|
else:
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
# TODO: Should we be parametrizing over types for `ser` too?
|
||
|
def test_float_series_rdiv_td64arr(self, box_with_array, names):
|
||
|
# GH#19042 test for correct name attachment
|
||
|
# TODO: the direct operation TimedeltaIndex / Series still
|
||
|
# needs to be fixed.
|
||
|
box = box_with_array
|
||
|
tdi = TimedeltaIndex(
|
||
|
["0days", "1day", "2days", "3days", "4days"], name=names[0]
|
||
|
)
|
||
|
ser = Series([1.5, 3, 4.5, 6, 7.5], dtype=np.float64, name=names[1])
|
||
|
|
||
|
xname = names[2] if box is not tm.to_array else names[1]
|
||
|
expected = Series(
|
||
|
[tdi[n] / ser[n] for n in range(len(ser))],
|
||
|
dtype="timedelta64[ns]",
|
||
|
name=xname,
|
||
|
)
|
||
|
|
||
|
xbox = box
|
||
|
if box in [pd.Index, tm.to_array] and type(ser) is Series:
|
||
|
xbox = Series
|
||
|
|
||
|
tdi = tm.box_expected(tdi, box)
|
||
|
expected = tm.box_expected(expected, xbox)
|
||
|
|
||
|
result = ser.__rdiv__(tdi)
|
||
|
if box is pd.DataFrame:
|
||
|
# TODO: Should we skip this case sooner or test something else?
|
||
|
assert result is NotImplemented
|
||
|
else:
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
|
||
|
class TestTimedelta64ArrayLikeArithmetic:
|
||
|
# Arithmetic tests for timedelta64[ns] vectors fully parametrized over
|
||
|
# DataFrame/Series/TimedeltaIndex/TimedeltaArray. Ideally all arithmetic
|
||
|
# tests will eventually end up here.
|
||
|
|
||
|
def test_td64arr_pow_invalid(self, scalar_td, box_with_array):
|
||
|
td1 = Series([timedelta(minutes=5, seconds=3)] * 3)
|
||
|
td1.iloc[2] = np.nan
|
||
|
|
||
|
td1 = tm.box_expected(td1, box_with_array)
|
||
|
|
||
|
# check that we are getting a TypeError
|
||
|
# with 'operate' (from core/ops.py) for the ops that are not
|
||
|
# defined
|
||
|
pattern = "operate|unsupported|cannot|not supported"
|
||
|
with pytest.raises(TypeError, match=pattern):
|
||
|
scalar_td ** td1
|
||
|
|
||
|
with pytest.raises(TypeError, match=pattern):
|
||
|
td1 ** scalar_td
|
||
|
|
||
|
|
||
|
def test_add_timestamp_to_timedelta():
|
||
|
# GH: 35897
|
||
|
timestamp = pd.Timestamp.now()
|
||
|
result = timestamp + pd.timedelta_range("0s", "1s", periods=31)
|
||
|
expected = pd.DatetimeIndex(
|
||
|
[
|
||
|
timestamp
|
||
|
+ (
|
||
|
pd.to_timedelta("0.033333333s") * i
|
||
|
+ pd.to_timedelta("0.000000001s") * divmod(i, 3)[0]
|
||
|
)
|
||
|
for i in range(31)
|
||
|
]
|
||
|
)
|
||
|
tm.assert_index_equal(result, expected)
|