1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/venv/lib/python3.9/site-packages/numpy/polynomial/tests/test_polyutils.py

107 lines
2.9 KiB

"""Tests for polyutils module.
"""
import numpy as np
import numpy.polynomial.polyutils as pu
from numpy.testing import (
assert_almost_equal, assert_raises, assert_equal, assert_,
)
class TestMisc:
def test_trimseq(self):
for i in range(5):
tgt = [1]
res = pu.trimseq([1] + [0]*5)
assert_equal(res, tgt)
def test_as_series(self):
# check exceptions
assert_raises(ValueError, pu.as_series, [[]])
assert_raises(ValueError, pu.as_series, [[[1, 2]]])
assert_raises(ValueError, pu.as_series, [[1], ['a']])
# check common types
types = ['i', 'd', 'O']
for i in range(len(types)):
for j in range(i):
ci = np.ones(1, types[i])
cj = np.ones(1, types[j])
[resi, resj] = pu.as_series([ci, cj])
assert_(resi.dtype.char == resj.dtype.char)
assert_(resj.dtype.char == types[i])
def test_trimcoef(self):
coef = [2, -1, 1, 0]
# Test exceptions
assert_raises(ValueError, pu.trimcoef, coef, -1)
# Test results
assert_equal(pu.trimcoef(coef), coef[:-1])
assert_equal(pu.trimcoef(coef, 1), coef[:-3])
assert_equal(pu.trimcoef(coef, 2), [0])
class TestDomain:
def test_getdomain(self):
# test for real values
x = [1, 10, 3, -1]
tgt = [-1, 10]
res = pu.getdomain(x)
assert_almost_equal(res, tgt)
# test for complex values
x = [1 + 1j, 1 - 1j, 0, 2]
tgt = [-1j, 2 + 1j]
res = pu.getdomain(x)
assert_almost_equal(res, tgt)
def test_mapdomain(self):
# test for real values
dom1 = [0, 4]
dom2 = [1, 3]
tgt = dom2
res = pu.mapdomain(dom1, dom1, dom2)
assert_almost_equal(res, tgt)
# test for complex values
dom1 = [0 - 1j, 2 + 1j]
dom2 = [-2, 2]
tgt = dom2
x = dom1
res = pu.mapdomain(x, dom1, dom2)
assert_almost_equal(res, tgt)
# test for multidimensional arrays
dom1 = [0, 4]
dom2 = [1, 3]
tgt = np.array([dom2, dom2])
x = np.array([dom1, dom1])
res = pu.mapdomain(x, dom1, dom2)
assert_almost_equal(res, tgt)
# test that subtypes are preserved.
class MyNDArray(np.ndarray):
pass
dom1 = [0, 4]
dom2 = [1, 3]
x = np.array([dom1, dom1]).view(MyNDArray)
res = pu.mapdomain(x, dom1, dom2)
assert_(isinstance(res, MyNDArray))
def test_mapparms(self):
# test for real values
dom1 = [0, 4]
dom2 = [1, 3]
tgt = [1, .5]
res = pu. mapparms(dom1, dom2)
assert_almost_equal(res, tgt)
# test for complex values
dom1 = [0 - 1j, 2 + 1j]
dom2 = [-2, 2]
tgt = [-1 + 1j, 1 - 1j]
res = pu.mapparms(dom1, dom2)
assert_almost_equal(res, tgt)