Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
576 lines
15 KiB
576 lines
15 KiB
4 years ago
|
"""
|
||
|
Various small and named graphs, together with some compact generators.
|
||
|
|
||
|
"""
|
||
|
|
||
|
__all__ = [
|
||
|
"make_small_graph",
|
||
|
"LCF_graph",
|
||
|
"bull_graph",
|
||
|
"chvatal_graph",
|
||
|
"cubical_graph",
|
||
|
"desargues_graph",
|
||
|
"diamond_graph",
|
||
|
"dodecahedral_graph",
|
||
|
"frucht_graph",
|
||
|
"heawood_graph",
|
||
|
"hoffman_singleton_graph",
|
||
|
"house_graph",
|
||
|
"house_x_graph",
|
||
|
"icosahedral_graph",
|
||
|
"krackhardt_kite_graph",
|
||
|
"moebius_kantor_graph",
|
||
|
"octahedral_graph",
|
||
|
"pappus_graph",
|
||
|
"petersen_graph",
|
||
|
"sedgewick_maze_graph",
|
||
|
"tetrahedral_graph",
|
||
|
"truncated_cube_graph",
|
||
|
"truncated_tetrahedron_graph",
|
||
|
"tutte_graph",
|
||
|
]
|
||
|
|
||
|
import networkx as nx
|
||
|
from networkx.generators.classic import (
|
||
|
empty_graph,
|
||
|
cycle_graph,
|
||
|
path_graph,
|
||
|
complete_graph,
|
||
|
)
|
||
|
from networkx.exception import NetworkXError
|
||
|
|
||
|
|
||
|
def make_small_undirected_graph(graph_description, create_using=None):
|
||
|
"""
|
||
|
Return a small undirected graph described by graph_description.
|
||
|
|
||
|
See make_small_graph.
|
||
|
"""
|
||
|
G = empty_graph(0, create_using)
|
||
|
if G.is_directed():
|
||
|
raise NetworkXError("Directed Graph not supported")
|
||
|
return make_small_graph(graph_description, G)
|
||
|
|
||
|
|
||
|
def make_small_graph(graph_description, create_using=None):
|
||
|
"""
|
||
|
Return the small graph described by graph_description.
|
||
|
|
||
|
graph_description is a list of the form [ltype,name,n,xlist]
|
||
|
|
||
|
Here ltype is one of "adjacencylist" or "edgelist",
|
||
|
name is the name of the graph and n the number of nodes.
|
||
|
This constructs a graph of n nodes with integer labels 0,..,n-1.
|
||
|
|
||
|
If ltype="adjacencylist" then xlist is an adjacency list
|
||
|
with exactly n entries, in with the j'th entry (which can be empty)
|
||
|
specifies the nodes connected to vertex j.
|
||
|
e.g. the "square" graph C_4 can be obtained by
|
||
|
|
||
|
>>> G = nx.make_small_graph(
|
||
|
... ["adjacencylist", "C_4", 4, [[2, 4], [1, 3], [2, 4], [1, 3]]]
|
||
|
... )
|
||
|
|
||
|
or, since we do not need to add edges twice,
|
||
|
|
||
|
>>> G = nx.make_small_graph(["adjacencylist", "C_4", 4, [[2, 4], [3], [4], []]])
|
||
|
|
||
|
If ltype="edgelist" then xlist is an edge list
|
||
|
written as [[v1,w2],[v2,w2],...,[vk,wk]],
|
||
|
where vj and wj integers in the range 1,..,n
|
||
|
e.g. the "square" graph C_4 can be obtained by
|
||
|
|
||
|
>>> G = nx.make_small_graph(
|
||
|
... ["edgelist", "C_4", 4, [[1, 2], [3, 4], [2, 3], [4, 1]]]
|
||
|
... )
|
||
|
|
||
|
Use the create_using argument to choose the graph class/type.
|
||
|
"""
|
||
|
|
||
|
if graph_description[0] not in ("adjacencylist", "edgelist"):
|
||
|
raise NetworkXError("ltype must be either adjacencylist or edgelist")
|
||
|
|
||
|
ltype = graph_description[0]
|
||
|
name = graph_description[1]
|
||
|
n = graph_description[2]
|
||
|
|
||
|
G = empty_graph(n, create_using)
|
||
|
nodes = G.nodes()
|
||
|
|
||
|
if ltype == "adjacencylist":
|
||
|
adjlist = graph_description[3]
|
||
|
if len(adjlist) != n:
|
||
|
raise NetworkXError("invalid graph_description")
|
||
|
G.add_edges_from([(u - 1, v) for v in nodes for u in adjlist[v]])
|
||
|
elif ltype == "edgelist":
|
||
|
edgelist = graph_description[3]
|
||
|
for e in edgelist:
|
||
|
v1 = e[0] - 1
|
||
|
v2 = e[1] - 1
|
||
|
if v1 < 0 or v1 > n - 1 or v2 < 0 or v2 > n - 1:
|
||
|
raise NetworkXError("invalid graph_description")
|
||
|
else:
|
||
|
G.add_edge(v1, v2)
|
||
|
G.name = name
|
||
|
return G
|
||
|
|
||
|
|
||
|
def LCF_graph(n, shift_list, repeats, create_using=None):
|
||
|
"""
|
||
|
Return the cubic graph specified in LCF notation.
|
||
|
|
||
|
LCF notation (LCF=Lederberg-Coxeter-Fruchte) is a compressed
|
||
|
notation used in the generation of various cubic Hamiltonian
|
||
|
graphs of high symmetry. See, for example, dodecahedral_graph,
|
||
|
desargues_graph, heawood_graph and pappus_graph below.
|
||
|
|
||
|
n (number of nodes)
|
||
|
The starting graph is the n-cycle with nodes 0,...,n-1.
|
||
|
(The null graph is returned if n < 0.)
|
||
|
|
||
|
shift_list = [s1,s2,..,sk], a list of integer shifts mod n,
|
||
|
|
||
|
repeats
|
||
|
integer specifying the number of times that shifts in shift_list
|
||
|
are successively applied to each v_current in the n-cycle
|
||
|
to generate an edge between v_current and v_current+shift mod n.
|
||
|
|
||
|
For v1 cycling through the n-cycle a total of k*repeats
|
||
|
with shift cycling through shiftlist repeats times connect
|
||
|
v1 with v1+shift mod n
|
||
|
|
||
|
The utility graph $K_{3,3}$
|
||
|
|
||
|
>>> G = nx.LCF_graph(6, [3, -3], 3)
|
||
|
|
||
|
The Heawood graph
|
||
|
|
||
|
>>> G = nx.LCF_graph(14, [5, -5], 7)
|
||
|
|
||
|
See http://mathworld.wolfram.com/LCFNotation.html for a description
|
||
|
and references.
|
||
|
|
||
|
"""
|
||
|
if n <= 0:
|
||
|
return empty_graph(0, create_using)
|
||
|
|
||
|
# start with the n-cycle
|
||
|
G = cycle_graph(n, create_using)
|
||
|
if G.is_directed():
|
||
|
raise NetworkXError("Directed Graph not supported")
|
||
|
G.name = "LCF_graph"
|
||
|
nodes = sorted(list(G))
|
||
|
|
||
|
n_extra_edges = repeats * len(shift_list)
|
||
|
# edges are added n_extra_edges times
|
||
|
# (not all of these need be new)
|
||
|
if n_extra_edges < 1:
|
||
|
return G
|
||
|
|
||
|
for i in range(n_extra_edges):
|
||
|
shift = shift_list[i % len(shift_list)] # cycle through shift_list
|
||
|
v1 = nodes[i % n] # cycle repeatedly through nodes
|
||
|
v2 = nodes[(i + shift) % n]
|
||
|
G.add_edge(v1, v2)
|
||
|
return G
|
||
|
|
||
|
|
||
|
# -------------------------------------------------------------------------------
|
||
|
# Various small and named graphs
|
||
|
# -------------------------------------------------------------------------------
|
||
|
|
||
|
|
||
|
def bull_graph(create_using=None):
|
||
|
"""Returns the Bull graph. """
|
||
|
description = [
|
||
|
"adjacencylist",
|
||
|
"Bull Graph",
|
||
|
5,
|
||
|
[[2, 3], [1, 3, 4], [1, 2, 5], [2], [3]],
|
||
|
]
|
||
|
G = make_small_undirected_graph(description, create_using)
|
||
|
return G
|
||
|
|
||
|
|
||
|
def chvatal_graph(create_using=None):
|
||
|
"""Returns the Chvátal graph."""
|
||
|
description = [
|
||
|
"adjacencylist",
|
||
|
"Chvatal Graph",
|
||
|
12,
|
||
|
[
|
||
|
[2, 5, 7, 10],
|
||
|
[3, 6, 8],
|
||
|
[4, 7, 9],
|
||
|
[5, 8, 10],
|
||
|
[6, 9],
|
||
|
[11, 12],
|
||
|
[11, 12],
|
||
|
[9, 12],
|
||
|
[11],
|
||
|
[11, 12],
|
||
|
[],
|
||
|
[],
|
||
|
],
|
||
|
]
|
||
|
G = make_small_undirected_graph(description, create_using)
|
||
|
return G
|
||
|
|
||
|
|
||
|
def cubical_graph(create_using=None):
|
||
|
"""Returns the 3-regular Platonic Cubical graph."""
|
||
|
description = [
|
||
|
"adjacencylist",
|
||
|
"Platonic Cubical Graph",
|
||
|
8,
|
||
|
[
|
||
|
[2, 4, 5],
|
||
|
[1, 3, 8],
|
||
|
[2, 4, 7],
|
||
|
[1, 3, 6],
|
||
|
[1, 6, 8],
|
||
|
[4, 5, 7],
|
||
|
[3, 6, 8],
|
||
|
[2, 5, 7],
|
||
|
],
|
||
|
]
|
||
|
G = make_small_undirected_graph(description, create_using)
|
||
|
return G
|
||
|
|
||
|
|
||
|
def desargues_graph(create_using=None):
|
||
|
""" Return the Desargues graph."""
|
||
|
G = LCF_graph(20, [5, -5, 9, -9], 5, create_using)
|
||
|
G.name = "Desargues Graph"
|
||
|
return G
|
||
|
|
||
|
|
||
|
def diamond_graph(create_using=None):
|
||
|
"""Returns the Diamond graph. """
|
||
|
description = [
|
||
|
"adjacencylist",
|
||
|
"Diamond Graph",
|
||
|
4,
|
||
|
[[2, 3], [1, 3, 4], [1, 2, 4], [2, 3]],
|
||
|
]
|
||
|
G = make_small_undirected_graph(description, create_using)
|
||
|
return G
|
||
|
|
||
|
|
||
|
def dodecahedral_graph(create_using=None):
|
||
|
""" Return the Platonic Dodecahedral graph. """
|
||
|
G = LCF_graph(20, [10, 7, 4, -4, -7, 10, -4, 7, -7, 4], 2, create_using)
|
||
|
G.name = "Dodecahedral Graph"
|
||
|
return G
|
||
|
|
||
|
|
||
|
def frucht_graph(create_using=None):
|
||
|
"""Returns the Frucht Graph.
|
||
|
|
||
|
The Frucht Graph is the smallest cubical graph whose
|
||
|
automorphism group consists only of the identity element.
|
||
|
|
||
|
"""
|
||
|
G = cycle_graph(7, create_using)
|
||
|
G.add_edges_from(
|
||
|
[
|
||
|
[0, 7],
|
||
|
[1, 7],
|
||
|
[2, 8],
|
||
|
[3, 9],
|
||
|
[4, 9],
|
||
|
[5, 10],
|
||
|
[6, 10],
|
||
|
[7, 11],
|
||
|
[8, 11],
|
||
|
[8, 9],
|
||
|
[10, 11],
|
||
|
]
|
||
|
)
|
||
|
|
||
|
G.name = "Frucht Graph"
|
||
|
return G
|
||
|
|
||
|
|
||
|
def heawood_graph(create_using=None):
|
||
|
""" Return the Heawood graph, a (3,6) cage. """
|
||
|
G = LCF_graph(14, [5, -5], 7, create_using)
|
||
|
G.name = "Heawood Graph"
|
||
|
return G
|
||
|
|
||
|
|
||
|
def hoffman_singleton_graph():
|
||
|
"""Return the Hoffman-Singleton Graph."""
|
||
|
G = nx.Graph()
|
||
|
for i in range(5):
|
||
|
for j in range(5):
|
||
|
G.add_edge(("pentagon", i, j), ("pentagon", i, (j - 1) % 5))
|
||
|
G.add_edge(("pentagon", i, j), ("pentagon", i, (j + 1) % 5))
|
||
|
G.add_edge(("pentagram", i, j), ("pentagram", i, (j - 2) % 5))
|
||
|
G.add_edge(("pentagram", i, j), ("pentagram", i, (j + 2) % 5))
|
||
|
for k in range(5):
|
||
|
G.add_edge(("pentagon", i, j), ("pentagram", k, (i * k + j) % 5))
|
||
|
G = nx.convert_node_labels_to_integers(G)
|
||
|
G.name = "Hoffman-Singleton Graph"
|
||
|
return G
|
||
|
|
||
|
|
||
|
def house_graph(create_using=None):
|
||
|
"""Returns the House graph (square with triangle on top)."""
|
||
|
description = [
|
||
|
"adjacencylist",
|
||
|
"House Graph",
|
||
|
5,
|
||
|
[[2, 3], [1, 4], [1, 4, 5], [2, 3, 5], [3, 4]],
|
||
|
]
|
||
|
G = make_small_undirected_graph(description, create_using)
|
||
|
return G
|
||
|
|
||
|
|
||
|
def house_x_graph(create_using=None):
|
||
|
"""Returns the House graph with a cross inside the house square."""
|
||
|
description = [
|
||
|
"adjacencylist",
|
||
|
"House-with-X-inside Graph",
|
||
|
5,
|
||
|
[[2, 3, 4], [1, 3, 4], [1, 2, 4, 5], [1, 2, 3, 5], [3, 4]],
|
||
|
]
|
||
|
G = make_small_undirected_graph(description, create_using)
|
||
|
return G
|
||
|
|
||
|
|
||
|
def icosahedral_graph(create_using=None):
|
||
|
"""Returns the Platonic Icosahedral graph."""
|
||
|
description = [
|
||
|
"adjacencylist",
|
||
|
"Platonic Icosahedral Graph",
|
||
|
12,
|
||
|
[
|
||
|
[2, 6, 8, 9, 12],
|
||
|
[3, 6, 7, 9],
|
||
|
[4, 7, 9, 10],
|
||
|
[5, 7, 10, 11],
|
||
|
[6, 7, 11, 12],
|
||
|
[7, 12],
|
||
|
[],
|
||
|
[9, 10, 11, 12],
|
||
|
[10],
|
||
|
[11],
|
||
|
[12],
|
||
|
[],
|
||
|
],
|
||
|
]
|
||
|
G = make_small_undirected_graph(description, create_using)
|
||
|
return G
|
||
|
|
||
|
|
||
|
def krackhardt_kite_graph(create_using=None):
|
||
|
"""
|
||
|
Return the Krackhardt Kite Social Network.
|
||
|
|
||
|
A 10 actor social network introduced by David Krackhardt
|
||
|
to illustrate: degree, betweenness, centrality, closeness, etc.
|
||
|
The traditional labeling is:
|
||
|
Andre=1, Beverley=2, Carol=3, Diane=4,
|
||
|
Ed=5, Fernando=6, Garth=7, Heather=8, Ike=9, Jane=10.
|
||
|
|
||
|
"""
|
||
|
description = [
|
||
|
"adjacencylist",
|
||
|
"Krackhardt Kite Social Network",
|
||
|
10,
|
||
|
[
|
||
|
[2, 3, 4, 6],
|
||
|
[1, 4, 5, 7],
|
||
|
[1, 4, 6],
|
||
|
[1, 2, 3, 5, 6, 7],
|
||
|
[2, 4, 7],
|
||
|
[1, 3, 4, 7, 8],
|
||
|
[2, 4, 5, 6, 8],
|
||
|
[6, 7, 9],
|
||
|
[8, 10],
|
||
|
[9],
|
||
|
],
|
||
|
]
|
||
|
G = make_small_undirected_graph(description, create_using)
|
||
|
return G
|
||
|
|
||
|
|
||
|
def moebius_kantor_graph(create_using=None):
|
||
|
"""Returns the Moebius-Kantor graph."""
|
||
|
G = LCF_graph(16, [5, -5], 8, create_using)
|
||
|
G.name = "Moebius-Kantor Graph"
|
||
|
return G
|
||
|
|
||
|
|
||
|
def octahedral_graph(create_using=None):
|
||
|
"""Returns the Platonic Octahedral graph."""
|
||
|
description = [
|
||
|
"adjacencylist",
|
||
|
"Platonic Octahedral Graph",
|
||
|
6,
|
||
|
[[2, 3, 4, 5], [3, 4, 6], [5, 6], [5, 6], [6], []],
|
||
|
]
|
||
|
G = make_small_undirected_graph(description, create_using)
|
||
|
return G
|
||
|
|
||
|
|
||
|
def pappus_graph():
|
||
|
""" Return the Pappus graph."""
|
||
|
G = LCF_graph(18, [5, 7, -7, 7, -7, -5], 3)
|
||
|
G.name = "Pappus Graph"
|
||
|
return G
|
||
|
|
||
|
|
||
|
def petersen_graph(create_using=None):
|
||
|
"""Returns the Petersen graph."""
|
||
|
description = [
|
||
|
"adjacencylist",
|
||
|
"Petersen Graph",
|
||
|
10,
|
||
|
[
|
||
|
[2, 5, 6],
|
||
|
[1, 3, 7],
|
||
|
[2, 4, 8],
|
||
|
[3, 5, 9],
|
||
|
[4, 1, 10],
|
||
|
[1, 8, 9],
|
||
|
[2, 9, 10],
|
||
|
[3, 6, 10],
|
||
|
[4, 6, 7],
|
||
|
[5, 7, 8],
|
||
|
],
|
||
|
]
|
||
|
G = make_small_undirected_graph(description, create_using)
|
||
|
return G
|
||
|
|
||
|
|
||
|
def sedgewick_maze_graph(create_using=None):
|
||
|
"""
|
||
|
Return a small maze with a cycle.
|
||
|
|
||
|
This is the maze used in Sedgewick,3rd Edition, Part 5, Graph
|
||
|
Algorithms, Chapter 18, e.g. Figure 18.2 and following.
|
||
|
Nodes are numbered 0,..,7
|
||
|
"""
|
||
|
G = empty_graph(0, create_using)
|
||
|
G.add_nodes_from(range(8))
|
||
|
G.add_edges_from([[0, 2], [0, 7], [0, 5]])
|
||
|
G.add_edges_from([[1, 7], [2, 6]])
|
||
|
G.add_edges_from([[3, 4], [3, 5]])
|
||
|
G.add_edges_from([[4, 5], [4, 7], [4, 6]])
|
||
|
G.name = "Sedgewick Maze"
|
||
|
return G
|
||
|
|
||
|
|
||
|
def tetrahedral_graph(create_using=None):
|
||
|
""" Return the 3-regular Platonic Tetrahedral graph."""
|
||
|
G = complete_graph(4, create_using)
|
||
|
G.name = "Platonic Tetrahedral graph"
|
||
|
return G
|
||
|
|
||
|
|
||
|
def truncated_cube_graph(create_using=None):
|
||
|
"""Returns the skeleton of the truncated cube."""
|
||
|
description = [
|
||
|
"adjacencylist",
|
||
|
"Truncated Cube Graph",
|
||
|
24,
|
||
|
[
|
||
|
[2, 3, 5],
|
||
|
[12, 15],
|
||
|
[4, 5],
|
||
|
[7, 9],
|
||
|
[6],
|
||
|
[17, 19],
|
||
|
[8, 9],
|
||
|
[11, 13],
|
||
|
[10],
|
||
|
[18, 21],
|
||
|
[12, 13],
|
||
|
[15],
|
||
|
[14],
|
||
|
[22, 23],
|
||
|
[16],
|
||
|
[20, 24],
|
||
|
[18, 19],
|
||
|
[21],
|
||
|
[20],
|
||
|
[24],
|
||
|
[22],
|
||
|
[23],
|
||
|
[24],
|
||
|
[],
|
||
|
],
|
||
|
]
|
||
|
G = make_small_undirected_graph(description, create_using)
|
||
|
return G
|
||
|
|
||
|
|
||
|
def truncated_tetrahedron_graph(create_using=None):
|
||
|
"""Returns the skeleton of the truncated Platonic tetrahedron."""
|
||
|
G = path_graph(12, create_using)
|
||
|
# G.add_edges_from([(1,3),(1,10),(2,7),(4,12),(5,12),(6,8),(9,11)])
|
||
|
G.add_edges_from([(0, 2), (0, 9), (1, 6), (3, 11), (4, 11), (5, 7), (8, 10)])
|
||
|
G.name = "Truncated Tetrahedron Graph"
|
||
|
return G
|
||
|
|
||
|
|
||
|
def tutte_graph(create_using=None):
|
||
|
"""Returns the Tutte graph."""
|
||
|
description = [
|
||
|
"adjacencylist",
|
||
|
"Tutte's Graph",
|
||
|
46,
|
||
|
[
|
||
|
[2, 3, 4],
|
||
|
[5, 27],
|
||
|
[11, 12],
|
||
|
[19, 20],
|
||
|
[6, 34],
|
||
|
[7, 30],
|
||
|
[8, 28],
|
||
|
[9, 15],
|
||
|
[10, 39],
|
||
|
[11, 38],
|
||
|
[40],
|
||
|
[13, 40],
|
||
|
[14, 36],
|
||
|
[15, 16],
|
||
|
[35],
|
||
|
[17, 23],
|
||
|
[18, 45],
|
||
|
[19, 44],
|
||
|
[46],
|
||
|
[21, 46],
|
||
|
[22, 42],
|
||
|
[23, 24],
|
||
|
[41],
|
||
|
[25, 28],
|
||
|
[26, 33],
|
||
|
[27, 32],
|
||
|
[34],
|
||
|
[29],
|
||
|
[30, 33],
|
||
|
[31],
|
||
|
[32, 34],
|
||
|
[33],
|
||
|
[],
|
||
|
[],
|
||
|
[36, 39],
|
||
|
[37],
|
||
|
[38, 40],
|
||
|
[39],
|
||
|
[],
|
||
|
[],
|
||
|
[42, 45],
|
||
|
[43],
|
||
|
[44, 46],
|
||
|
[45],
|
||
|
[],
|
||
|
[],
|
||
|
],
|
||
|
]
|
||
|
G = make_small_undirected_graph(description, create_using)
|
||
|
return G
|