1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/main_package/classes/utility/sample_importer.py

68 lines
2.6 KiB

import json
import typing
import pandas as pd
import numpy as np
import sys
sys.path.append('../')
import utility.abstract_importer as ai
class SampleImporter(ai.AbstractImporter):
#TODO: Scrivere documentazione
"""Implements the abstracts methods of AbstractImporter and adds all the necessary methods to process and prepare
the data loaded directly by using DataFrame
:param trajectory_list: the data that describes the trajectories
:type trajectory_list: typing.Union[pd.DataFrame, np.ndarray, typing.List]
:param variables: the data that describes the variables with name and cardinality
:type variables: typing.Union[pd.DataFrame, np.ndarray, typing.List]
:param prior_net_structure: the data of the real structure, if it exists
:type prior_net_structure: typing.Union[pd.DataFrame, np.ndarray, typing.List]
:_df_samples_list: a Dataframe list in which every dataframe contains a trajectory
:_raw_data: The raw contents of the json file to import
:type _raw_data: List
"""
def __init__(self,
trajectory_list: typing.Union[pd.DataFrame, np.ndarray, typing.List] = None,
variables: typing.Union[pd.DataFrame, np.ndarray, typing.List] = None,
prior_net_structure: typing.Union[pd.DataFrame, np.ndarray,typing.List] = None):
'If the data are not DataFrame, it will be converted'
if isinstance(variables,list) or isinstance(variables,np.ndarray):
variables = pd.DataFrame(variables)
if isinstance(variables,list) or isinstance(variables,np.ndarray):
prior_net_structure=pd.DataFrame(prior_net_structure)
super(SampleImporter, self).__init__(trajectory_list =trajectory_list,
variables= variables,
prior_net_structure=prior_net_structure)
def import_data(self, header_column = None):
if header_column is None:
self._sorter = header_column
else:
self._sorter = self.build_sorter(self._df_samples_list[0])
samples_list= self._df_samples_list
if isinstance(samples_list, np.ndarray):
samples_list = samples_list.tolist()
self.compute_row_delta_in_all_samples_frames(samples_list)
def build_sorter(self, sample_frame: pd.DataFrame) -> typing.List:
"""Implements the abstract method build_sorter of the :class:`AbstractImporter` in order to get the ordered variables list.
"""
columns_header = list(sample_frame.columns.values)
del columns_header[0]
return columns_header
def dataset_id(self) -> object:
pass