Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
61 lines
1.6 KiB
61 lines
1.6 KiB
4 years ago
|
import pandas as pd
|
||
|
import glob
|
||
|
import os
|
||
|
import typing
|
||
|
|
||
4 years ago
|
from PyCTBN.classes.abstract_importer import AbstractImporter
|
||
|
from PyCTBN.classes.sample_path import SamplePath
|
||
4 years ago
|
|
||
|
|
||
|
class CSVImporter(AbstractImporter):
|
||
|
|
||
|
def __init__(self, file_path):
|
||
|
self._df_samples_list = None
|
||
|
super(CSVImporter, self).__init__(file_path)
|
||
|
|
||
|
def import_data(self):
|
||
|
self.read_csv_file()
|
||
|
self._sorter = self.build_sorter(self._df_samples_list[0])
|
||
|
self.import_variables()
|
||
|
self.import_structure()
|
||
|
self.compute_row_delta_in_all_samples_frames(self._df_samples_list)
|
||
|
|
||
|
def read_csv_file(self):
|
||
|
df = pd.read_csv(self._file_path)
|
||
|
df.drop(df.columns[[0]], axis=1, inplace=True)
|
||
|
self._df_samples_list = [df]
|
||
|
|
||
|
def import_variables(self):
|
||
|
values_list = [3 for var in self._sorter]
|
||
|
# initialize dict of lists
|
||
|
data = {'Name':self._sorter, 'Value':values_list}
|
||
|
# Create the pandas DataFrame
|
||
|
self._df_variables = pd.DataFrame(data)
|
||
|
|
||
|
def build_sorter(self, sample_frame: pd.DataFrame) -> typing.List:
|
||
|
return list(sample_frame.columns)[1:]
|
||
|
|
||
|
def import_structure(self):
|
||
|
data = {'From':['X','Y','Z'], 'To':['Z','Z','Y']}
|
||
|
self._df_structure = pd.DataFrame(data)
|
||
|
|
||
|
def dataset_id(self) -> object:
|
||
|
pass
|
||
|
|
||
|
|
||
|
def main():
|
||
4 years ago
|
read_files = glob.glob(os.path.join('../../data', "*.csv"))
|
||
4 years ago
|
print(read_files[0])
|
||
|
csvimp = CSVImporter(read_files[0])
|
||
4 years ago
|
csvimp.import_data()
|
||
4 years ago
|
s1 = SamplePath(csvimp)
|
||
|
s1.build_trajectories()
|
||
|
s1.build_structure()
|
||
|
print(s1.structure)
|
||
|
print(s1.trajectories)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
main()
|
||
|
|