Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
40 lines
751 B
40 lines
751 B
4 years ago
|
"""
|
||
|
======
|
||
|
Rgraph
|
||
|
======
|
||
|
|
||
|
An example showing how to use the JavaScript InfoVis Toolkit (JIT)
|
||
|
JSON export
|
||
|
|
||
|
See the JIT documentation and examples at http://thejit.org
|
||
|
|
||
|
"""
|
||
|
|
||
|
import json
|
||
|
|
||
|
import matplotlib.pyplot as plt
|
||
|
import networkx as nx
|
||
|
from networkx.readwrite.json_graph import jit_data, jit_graph
|
||
|
|
||
|
# add some nodes to a graph
|
||
|
G = nx.Graph()
|
||
|
|
||
|
G.add_node("one", type="normal")
|
||
|
G.add_node("two", type="special")
|
||
|
G.add_node("solo")
|
||
|
|
||
|
# add edges
|
||
|
G.add_edge("one", "two")
|
||
|
G.add_edge("two", 3, type="extra special")
|
||
|
|
||
|
# convert to JIT JSON
|
||
|
jit_json = jit_data(G, indent=4)
|
||
|
print(jit_json)
|
||
|
|
||
|
X = jit_graph(json.loads(jit_json))
|
||
|
print(f"Nodes: {list(X.nodes(data=True))}")
|
||
|
print(f"Edges: {list(X.edges(data=True))}")
|
||
|
|
||
|
nx.draw(G, with_labels=True)
|
||
|
plt.show()
|