Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
641 lines
21 KiB
641 lines
21 KiB
4 years ago
|
#-------------------------------------------------------------------------------
|
||
|
#
|
||
|
# Define classes for (uni/multi)-variate kernel density estimation.
|
||
|
#
|
||
|
# Currently, only Gaussian kernels are implemented.
|
||
|
#
|
||
|
# Written by: Robert Kern
|
||
|
#
|
||
|
# Date: 2004-08-09
|
||
|
#
|
||
|
# Modified: 2005-02-10 by Robert Kern.
|
||
|
# Contributed to SciPy
|
||
|
# 2005-10-07 by Robert Kern.
|
||
|
# Some fixes to match the new scipy_core
|
||
|
#
|
||
|
# Copyright 2004-2005 by Enthought, Inc.
|
||
|
#
|
||
|
#-------------------------------------------------------------------------------
|
||
|
|
||
|
# Standard library imports.
|
||
|
import warnings
|
||
|
|
||
|
# SciPy imports.
|
||
|
from scipy import linalg, special
|
||
|
from scipy.special import logsumexp
|
||
|
from scipy._lib._util import check_random_state
|
||
|
|
||
|
from numpy import (asarray, atleast_2d, reshape, zeros, newaxis, dot, exp, pi,
|
||
|
sqrt, ravel, power, atleast_1d, squeeze, sum, transpose,
|
||
|
ones, cov)
|
||
|
import numpy as np
|
||
|
|
||
|
# Local imports.
|
||
|
from . import mvn
|
||
|
from ._stats import gaussian_kernel_estimate
|
||
|
|
||
|
|
||
|
__all__ = ['gaussian_kde']
|
||
|
|
||
|
|
||
|
class gaussian_kde(object):
|
||
|
"""Representation of a kernel-density estimate using Gaussian kernels.
|
||
|
|
||
|
Kernel density estimation is a way to estimate the probability density
|
||
|
function (PDF) of a random variable in a non-parametric way.
|
||
|
`gaussian_kde` works for both uni-variate and multi-variate data. It
|
||
|
includes automatic bandwidth determination. The estimation works best for
|
||
|
a unimodal distribution; bimodal or multi-modal distributions tend to be
|
||
|
oversmoothed.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
dataset : array_like
|
||
|
Datapoints to estimate from. In case of univariate data this is a 1-D
|
||
|
array, otherwise a 2-D array with shape (# of dims, # of data).
|
||
|
bw_method : str, scalar or callable, optional
|
||
|
The method used to calculate the estimator bandwidth. This can be
|
||
|
'scott', 'silverman', a scalar constant or a callable. If a scalar,
|
||
|
this will be used directly as `kde.factor`. If a callable, it should
|
||
|
take a `gaussian_kde` instance as only parameter and return a scalar.
|
||
|
If None (default), 'scott' is used. See Notes for more details.
|
||
|
weights : array_like, optional
|
||
|
weights of datapoints. This must be the same shape as dataset.
|
||
|
If None (default), the samples are assumed to be equally weighted
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
dataset : ndarray
|
||
|
The dataset with which `gaussian_kde` was initialized.
|
||
|
d : int
|
||
|
Number of dimensions.
|
||
|
n : int
|
||
|
Number of datapoints.
|
||
|
neff : int
|
||
|
Effective number of datapoints.
|
||
|
|
||
|
.. versionadded:: 1.2.0
|
||
|
factor : float
|
||
|
The bandwidth factor, obtained from `kde.covariance_factor`, with which
|
||
|
the covariance matrix is multiplied.
|
||
|
covariance : ndarray
|
||
|
The covariance matrix of `dataset`, scaled by the calculated bandwidth
|
||
|
(`kde.factor`).
|
||
|
inv_cov : ndarray
|
||
|
The inverse of `covariance`.
|
||
|
|
||
|
Methods
|
||
|
-------
|
||
|
evaluate
|
||
|
__call__
|
||
|
integrate_gaussian
|
||
|
integrate_box_1d
|
||
|
integrate_box
|
||
|
integrate_kde
|
||
|
pdf
|
||
|
logpdf
|
||
|
resample
|
||
|
set_bandwidth
|
||
|
covariance_factor
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Bandwidth selection strongly influences the estimate obtained from the KDE
|
||
|
(much more so than the actual shape of the kernel). Bandwidth selection
|
||
|
can be done by a "rule of thumb", by cross-validation, by "plug-in
|
||
|
methods" or by other means; see [3]_, [4]_ for reviews. `gaussian_kde`
|
||
|
uses a rule of thumb, the default is Scott's Rule.
|
||
|
|
||
|
Scott's Rule [1]_, implemented as `scotts_factor`, is::
|
||
|
|
||
|
n**(-1./(d+4)),
|
||
|
|
||
|
with ``n`` the number of data points and ``d`` the number of dimensions.
|
||
|
In the case of unequally weighted points, `scotts_factor` becomes::
|
||
|
|
||
|
neff**(-1./(d+4)),
|
||
|
|
||
|
with ``neff`` the effective number of datapoints.
|
||
|
Silverman's Rule [2]_, implemented as `silverman_factor`, is::
|
||
|
|
||
|
(n * (d + 2) / 4.)**(-1. / (d + 4)).
|
||
|
|
||
|
or in the case of unequally weighted points::
|
||
|
|
||
|
(neff * (d + 2) / 4.)**(-1. / (d + 4)).
|
||
|
|
||
|
Good general descriptions of kernel density estimation can be found in [1]_
|
||
|
and [2]_, the mathematics for this multi-dimensional implementation can be
|
||
|
found in [1]_.
|
||
|
|
||
|
With a set of weighted samples, the effective number of datapoints ``neff``
|
||
|
is defined by::
|
||
|
|
||
|
neff = sum(weights)^2 / sum(weights^2)
|
||
|
|
||
|
as detailed in [5]_.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] D.W. Scott, "Multivariate Density Estimation: Theory, Practice, and
|
||
|
Visualization", John Wiley & Sons, New York, Chicester, 1992.
|
||
|
.. [2] B.W. Silverman, "Density Estimation for Statistics and Data
|
||
|
Analysis", Vol. 26, Monographs on Statistics and Applied Probability,
|
||
|
Chapman and Hall, London, 1986.
|
||
|
.. [3] B.A. Turlach, "Bandwidth Selection in Kernel Density Estimation: A
|
||
|
Review", CORE and Institut de Statistique, Vol. 19, pp. 1-33, 1993.
|
||
|
.. [4] D.M. Bashtannyk and R.J. Hyndman, "Bandwidth selection for kernel
|
||
|
conditional density estimation", Computational Statistics & Data
|
||
|
Analysis, Vol. 36, pp. 279-298, 2001.
|
||
|
.. [5] Gray P. G., 1969, Journal of the Royal Statistical Society.
|
||
|
Series A (General), 132, 272
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Generate some random two-dimensional data:
|
||
|
|
||
|
>>> from scipy import stats
|
||
|
>>> def measure(n):
|
||
|
... "Measurement model, return two coupled measurements."
|
||
|
... m1 = np.random.normal(size=n)
|
||
|
... m2 = np.random.normal(scale=0.5, size=n)
|
||
|
... return m1+m2, m1-m2
|
||
|
|
||
|
>>> m1, m2 = measure(2000)
|
||
|
>>> xmin = m1.min()
|
||
|
>>> xmax = m1.max()
|
||
|
>>> ymin = m2.min()
|
||
|
>>> ymax = m2.max()
|
||
|
|
||
|
Perform a kernel density estimate on the data:
|
||
|
|
||
|
>>> X, Y = np.mgrid[xmin:xmax:100j, ymin:ymax:100j]
|
||
|
>>> positions = np.vstack([X.ravel(), Y.ravel()])
|
||
|
>>> values = np.vstack([m1, m2])
|
||
|
>>> kernel = stats.gaussian_kde(values)
|
||
|
>>> Z = np.reshape(kernel(positions).T, X.shape)
|
||
|
|
||
|
Plot the results:
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> ax.imshow(np.rot90(Z), cmap=plt.cm.gist_earth_r,
|
||
|
... extent=[xmin, xmax, ymin, ymax])
|
||
|
>>> ax.plot(m1, m2, 'k.', markersize=2)
|
||
|
>>> ax.set_xlim([xmin, xmax])
|
||
|
>>> ax.set_ylim([ymin, ymax])
|
||
|
>>> plt.show()
|
||
|
|
||
|
"""
|
||
|
def __init__(self, dataset, bw_method=None, weights=None):
|
||
|
self.dataset = atleast_2d(asarray(dataset))
|
||
|
if not self.dataset.size > 1:
|
||
|
raise ValueError("`dataset` input should have multiple elements.")
|
||
|
|
||
|
self.d, self.n = self.dataset.shape
|
||
|
|
||
|
if weights is not None:
|
||
|
self._weights = atleast_1d(weights).astype(float)
|
||
|
self._weights /= sum(self._weights)
|
||
|
if self.weights.ndim != 1:
|
||
|
raise ValueError("`weights` input should be one-dimensional.")
|
||
|
if len(self._weights) != self.n:
|
||
|
raise ValueError("`weights` input should be of length n")
|
||
|
self._neff = 1/sum(self._weights**2)
|
||
|
|
||
|
self.set_bandwidth(bw_method=bw_method)
|
||
|
|
||
|
def evaluate(self, points):
|
||
|
"""Evaluate the estimated pdf on a set of points.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
points : (# of dimensions, # of points)-array
|
||
|
Alternatively, a (# of dimensions,) vector can be passed in and
|
||
|
treated as a single point.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
values : (# of points,)-array
|
||
|
The values at each point.
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
ValueError : if the dimensionality of the input points is different than
|
||
|
the dimensionality of the KDE.
|
||
|
|
||
|
"""
|
||
|
points = atleast_2d(asarray(points))
|
||
|
|
||
|
d, m = points.shape
|
||
|
if d != self.d:
|
||
|
if d == 1 and m == self.d:
|
||
|
# points was passed in as a row vector
|
||
|
points = reshape(points, (self.d, 1))
|
||
|
m = 1
|
||
|
else:
|
||
|
msg = "points have dimension %s, dataset has dimension %s" % (d,
|
||
|
self.d)
|
||
|
raise ValueError(msg)
|
||
|
|
||
|
output_dtype = np.common_type(self.covariance, points)
|
||
|
itemsize = np.dtype(output_dtype).itemsize
|
||
|
if itemsize == 4:
|
||
|
spec = 'float'
|
||
|
elif itemsize == 8:
|
||
|
spec = 'double'
|
||
|
elif itemsize in (12, 16):
|
||
|
spec = 'long double'
|
||
|
else:
|
||
|
raise TypeError('%s has unexpected item size %d' %
|
||
|
(output_dtype, itemsize))
|
||
|
result = gaussian_kernel_estimate[spec](self.dataset.T, self.weights[:, None],
|
||
|
points.T, self.inv_cov, output_dtype)
|
||
|
return result[:, 0]
|
||
|
|
||
|
__call__ = evaluate
|
||
|
|
||
|
def integrate_gaussian(self, mean, cov):
|
||
|
"""
|
||
|
Multiply estimated density by a multivariate Gaussian and integrate
|
||
|
over the whole space.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
mean : aray_like
|
||
|
A 1-D array, specifying the mean of the Gaussian.
|
||
|
cov : array_like
|
||
|
A 2-D array, specifying the covariance matrix of the Gaussian.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
result : scalar
|
||
|
The value of the integral.
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
ValueError
|
||
|
If the mean or covariance of the input Gaussian differs from
|
||
|
the KDE's dimensionality.
|
||
|
|
||
|
"""
|
||
|
mean = atleast_1d(squeeze(mean))
|
||
|
cov = atleast_2d(cov)
|
||
|
|
||
|
if mean.shape != (self.d,):
|
||
|
raise ValueError("mean does not have dimension %s" % self.d)
|
||
|
if cov.shape != (self.d, self.d):
|
||
|
raise ValueError("covariance does not have dimension %s" % self.d)
|
||
|
|
||
|
# make mean a column vector
|
||
|
mean = mean[:, newaxis]
|
||
|
|
||
|
sum_cov = self.covariance + cov
|
||
|
|
||
|
# This will raise LinAlgError if the new cov matrix is not s.p.d
|
||
|
# cho_factor returns (ndarray, bool) where bool is a flag for whether
|
||
|
# or not ndarray is upper or lower triangular
|
||
|
sum_cov_chol = linalg.cho_factor(sum_cov)
|
||
|
|
||
|
diff = self.dataset - mean
|
||
|
tdiff = linalg.cho_solve(sum_cov_chol, diff)
|
||
|
|
||
|
sqrt_det = np.prod(np.diagonal(sum_cov_chol[0]))
|
||
|
norm_const = power(2 * pi, sum_cov.shape[0] / 2.0) * sqrt_det
|
||
|
|
||
|
energies = sum(diff * tdiff, axis=0) / 2.0
|
||
|
result = sum(exp(-energies)*self.weights, axis=0) / norm_const
|
||
|
|
||
|
return result
|
||
|
|
||
|
def integrate_box_1d(self, low, high):
|
||
|
"""
|
||
|
Computes the integral of a 1D pdf between two bounds.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
low : scalar
|
||
|
Lower bound of integration.
|
||
|
high : scalar
|
||
|
Upper bound of integration.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
value : scalar
|
||
|
The result of the integral.
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
ValueError
|
||
|
If the KDE is over more than one dimension.
|
||
|
|
||
|
"""
|
||
|
if self.d != 1:
|
||
|
raise ValueError("integrate_box_1d() only handles 1D pdfs")
|
||
|
|
||
|
stdev = ravel(sqrt(self.covariance))[0]
|
||
|
|
||
|
normalized_low = ravel((low - self.dataset) / stdev)
|
||
|
normalized_high = ravel((high - self.dataset) / stdev)
|
||
|
|
||
|
value = np.sum(self.weights*(
|
||
|
special.ndtr(normalized_high) -
|
||
|
special.ndtr(normalized_low)))
|
||
|
return value
|
||
|
|
||
|
def integrate_box(self, low_bounds, high_bounds, maxpts=None):
|
||
|
"""Computes the integral of a pdf over a rectangular interval.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
low_bounds : array_like
|
||
|
A 1-D array containing the lower bounds of integration.
|
||
|
high_bounds : array_like
|
||
|
A 1-D array containing the upper bounds of integration.
|
||
|
maxpts : int, optional
|
||
|
The maximum number of points to use for integration.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
value : scalar
|
||
|
The result of the integral.
|
||
|
|
||
|
"""
|
||
|
if maxpts is not None:
|
||
|
extra_kwds = {'maxpts': maxpts}
|
||
|
else:
|
||
|
extra_kwds = {}
|
||
|
|
||
|
value, inform = mvn.mvnun_weighted(low_bounds, high_bounds,
|
||
|
self.dataset, self.weights,
|
||
|
self.covariance, **extra_kwds)
|
||
|
if inform:
|
||
|
msg = ('An integral in mvn.mvnun requires more points than %s' %
|
||
|
(self.d * 1000))
|
||
|
warnings.warn(msg)
|
||
|
|
||
|
return value
|
||
|
|
||
|
def integrate_kde(self, other):
|
||
|
"""
|
||
|
Computes the integral of the product of this kernel density estimate
|
||
|
with another.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
other : gaussian_kde instance
|
||
|
The other kde.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
value : scalar
|
||
|
The result of the integral.
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
ValueError
|
||
|
If the KDEs have different dimensionality.
|
||
|
|
||
|
"""
|
||
|
if other.d != self.d:
|
||
|
raise ValueError("KDEs are not the same dimensionality")
|
||
|
|
||
|
# we want to iterate over the smallest number of points
|
||
|
if other.n < self.n:
|
||
|
small = other
|
||
|
large = self
|
||
|
else:
|
||
|
small = self
|
||
|
large = other
|
||
|
|
||
|
sum_cov = small.covariance + large.covariance
|
||
|
sum_cov_chol = linalg.cho_factor(sum_cov)
|
||
|
result = 0.0
|
||
|
for i in range(small.n):
|
||
|
mean = small.dataset[:, i, newaxis]
|
||
|
diff = large.dataset - mean
|
||
|
tdiff = linalg.cho_solve(sum_cov_chol, diff)
|
||
|
|
||
|
energies = sum(diff * tdiff, axis=0) / 2.0
|
||
|
result += sum(exp(-energies)*large.weights, axis=0)*small.weights[i]
|
||
|
|
||
|
sqrt_det = np.prod(np.diagonal(sum_cov_chol[0]))
|
||
|
norm_const = power(2 * pi, sum_cov.shape[0] / 2.0) * sqrt_det
|
||
|
|
||
|
result /= norm_const
|
||
|
|
||
|
return result
|
||
|
|
||
|
def resample(self, size=None, seed=None):
|
||
|
"""
|
||
|
Randomly sample a dataset from the estimated pdf.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
size : int, optional
|
||
|
The number of samples to draw. If not provided, then the size is
|
||
|
the same as the effective number of samples in the underlying
|
||
|
dataset.
|
||
|
seed : {None, int, `~np.random.RandomState`, `~np.random.Generator`}, optional
|
||
|
This parameter defines the object to use for drawing random
|
||
|
variates.
|
||
|
If `seed` is `None` the `~np.random.RandomState` singleton is used.
|
||
|
If `seed` is an int, a new ``RandomState`` instance is used, seeded
|
||
|
with seed.
|
||
|
If `seed` is already a ``RandomState`` or ``Generator`` instance,
|
||
|
then that object is used.
|
||
|
Default is None.
|
||
|
Specify `seed` for reproducible drawing of random variates.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
resample : (self.d, `size`) ndarray
|
||
|
The sampled dataset.
|
||
|
|
||
|
"""
|
||
|
if size is None:
|
||
|
size = int(self.neff)
|
||
|
|
||
|
random_state = check_random_state(seed)
|
||
|
norm = transpose(random_state.multivariate_normal(
|
||
|
zeros((self.d,), float), self.covariance, size=size
|
||
|
))
|
||
|
indices = random_state.choice(self.n, size=size, p=self.weights)
|
||
|
means = self.dataset[:, indices]
|
||
|
|
||
|
return means + norm
|
||
|
|
||
|
def scotts_factor(self):
|
||
|
"""Compute Scott's factor.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
s : float
|
||
|
Scott's factor.
|
||
|
"""
|
||
|
return power(self.neff, -1./(self.d+4))
|
||
|
|
||
|
def silverman_factor(self):
|
||
|
"""Compute the Silverman factor.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
s : float
|
||
|
The silverman factor.
|
||
|
"""
|
||
|
return power(self.neff*(self.d+2.0)/4.0, -1./(self.d+4))
|
||
|
|
||
|
# Default method to calculate bandwidth, can be overwritten by subclass
|
||
|
covariance_factor = scotts_factor
|
||
|
covariance_factor.__doc__ = """Computes the coefficient (`kde.factor`) that
|
||
|
multiplies the data covariance matrix to obtain the kernel covariance
|
||
|
matrix. The default is `scotts_factor`. A subclass can overwrite this
|
||
|
method to provide a different method, or set it through a call to
|
||
|
`kde.set_bandwidth`."""
|
||
|
|
||
|
def set_bandwidth(self, bw_method=None):
|
||
|
"""Compute the estimator bandwidth with given method.
|
||
|
|
||
|
The new bandwidth calculated after a call to `set_bandwidth` is used
|
||
|
for subsequent evaluations of the estimated density.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
bw_method : str, scalar or callable, optional
|
||
|
The method used to calculate the estimator bandwidth. This can be
|
||
|
'scott', 'silverman', a scalar constant or a callable. If a
|
||
|
scalar, this will be used directly as `kde.factor`. If a callable,
|
||
|
it should take a `gaussian_kde` instance as only parameter and
|
||
|
return a scalar. If None (default), nothing happens; the current
|
||
|
`kde.covariance_factor` method is kept.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
.. versionadded:: 0.11
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import scipy.stats as stats
|
||
|
>>> x1 = np.array([-7, -5, 1, 4, 5.])
|
||
|
>>> kde = stats.gaussian_kde(x1)
|
||
|
>>> xs = np.linspace(-10, 10, num=50)
|
||
|
>>> y1 = kde(xs)
|
||
|
>>> kde.set_bandwidth(bw_method='silverman')
|
||
|
>>> y2 = kde(xs)
|
||
|
>>> kde.set_bandwidth(bw_method=kde.factor / 3.)
|
||
|
>>> y3 = kde(xs)
|
||
|
|
||
|
>>> import matplotlib.pyplot as plt
|
||
|
>>> fig, ax = plt.subplots()
|
||
|
>>> ax.plot(x1, np.full(x1.shape, 1 / (4. * x1.size)), 'bo',
|
||
|
... label='Data points (rescaled)')
|
||
|
>>> ax.plot(xs, y1, label='Scott (default)')
|
||
|
>>> ax.plot(xs, y2, label='Silverman')
|
||
|
>>> ax.plot(xs, y3, label='Const (1/3 * Silverman)')
|
||
|
>>> ax.legend()
|
||
|
>>> plt.show()
|
||
|
|
||
|
"""
|
||
|
if bw_method is None:
|
||
|
pass
|
||
|
elif bw_method == 'scott':
|
||
|
self.covariance_factor = self.scotts_factor
|
||
|
elif bw_method == 'silverman':
|
||
|
self.covariance_factor = self.silverman_factor
|
||
|
elif np.isscalar(bw_method) and not isinstance(bw_method, str):
|
||
|
self._bw_method = 'use constant'
|
||
|
self.covariance_factor = lambda: bw_method
|
||
|
elif callable(bw_method):
|
||
|
self._bw_method = bw_method
|
||
|
self.covariance_factor = lambda: self._bw_method(self)
|
||
|
else:
|
||
|
msg = "`bw_method` should be 'scott', 'silverman', a scalar " \
|
||
|
"or a callable."
|
||
|
raise ValueError(msg)
|
||
|
|
||
|
self._compute_covariance()
|
||
|
|
||
|
def _compute_covariance(self):
|
||
|
"""Computes the covariance matrix for each Gaussian kernel using
|
||
|
covariance_factor().
|
||
|
"""
|
||
|
self.factor = self.covariance_factor()
|
||
|
# Cache covariance and inverse covariance of the data
|
||
|
if not hasattr(self, '_data_inv_cov'):
|
||
|
self._data_covariance = atleast_2d(cov(self.dataset, rowvar=1,
|
||
|
bias=False,
|
||
|
aweights=self.weights))
|
||
|
self._data_inv_cov = linalg.inv(self._data_covariance)
|
||
|
|
||
|
self.covariance = self._data_covariance * self.factor**2
|
||
|
self.inv_cov = self._data_inv_cov / self.factor**2
|
||
|
L = linalg.cholesky(self.covariance*2*pi)
|
||
|
self.log_det = 2*np.log(np.diag(L)).sum()
|
||
|
|
||
|
def pdf(self, x):
|
||
|
"""
|
||
|
Evaluate the estimated pdf on a provided set of points.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This is an alias for `gaussian_kde.evaluate`. See the ``evaluate``
|
||
|
docstring for more details.
|
||
|
|
||
|
"""
|
||
|
return self.evaluate(x)
|
||
|
|
||
|
def logpdf(self, x):
|
||
|
"""
|
||
|
Evaluate the log of the estimated pdf on a provided set of points.
|
||
|
"""
|
||
|
|
||
|
points = atleast_2d(x)
|
||
|
|
||
|
d, m = points.shape
|
||
|
if d != self.d:
|
||
|
if d == 1 and m == self.d:
|
||
|
# points was passed in as a row vector
|
||
|
points = reshape(points, (self.d, 1))
|
||
|
m = 1
|
||
|
else:
|
||
|
msg = "points have dimension %s, dataset has dimension %s" % (d,
|
||
|
self.d)
|
||
|
raise ValueError(msg)
|
||
|
|
||
|
if m >= self.n:
|
||
|
# there are more points than data, so loop over data
|
||
|
energy = zeros((self.n, m), dtype=float)
|
||
|
for i in range(self.n):
|
||
|
diff = self.dataset[:, i, newaxis] - points
|
||
|
tdiff = dot(self.inv_cov, diff)
|
||
|
energy[i] = sum(diff*tdiff, axis=0)
|
||
|
log_to_sum = 2.0 * np.log(self.weights) - self.log_det - energy.T
|
||
|
result = logsumexp(0.5 * log_to_sum, axis=1)
|
||
|
else:
|
||
|
# loop over points
|
||
|
result = zeros((m,), dtype=float)
|
||
|
for i in range(m):
|
||
|
diff = self.dataset - points[:, i, newaxis]
|
||
|
tdiff = dot(self.inv_cov, diff)
|
||
|
energy = sum(diff * tdiff, axis=0)
|
||
|
log_to_sum = 2.0 * np.log(self.weights) - self.log_det - energy
|
||
|
result[i] = logsumexp(0.5 * log_to_sum)
|
||
|
|
||
|
return result
|
||
|
|
||
|
@property
|
||
|
def weights(self):
|
||
|
try:
|
||
|
return self._weights
|
||
|
except AttributeError:
|
||
|
self._weights = ones(self.n)/self.n
|
||
|
return self._weights
|
||
|
|
||
|
@property
|
||
|
def neff(self):
|
||
|
try:
|
||
|
return self._neff
|
||
|
except AttributeError:
|
||
|
self._neff = 1/sum(self.weights**2)
|
||
|
return self._neff
|