1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/venv/lib/python3.9/site-packages/scipy/special/tests/test_gammainc.py

137 lines
3.7 KiB

import pytest
import numpy as np
from numpy.testing import assert_allclose, assert_array_equal
import scipy.special as sc
from scipy.special._testutils import FuncData
INVALID_POINTS = [
(1, -1),
(0, 0),
(-1, 1),
(np.nan, 1),
(1, np.nan)
]
class TestGammainc(object):
@pytest.mark.parametrize('a, x', INVALID_POINTS)
def test_domain(self, a, x):
assert np.isnan(sc.gammainc(a, x))
def test_a_eq_0_x_gt_0(self):
assert sc.gammainc(0, 1) == 1
@pytest.mark.parametrize('a, x, desired', [
(np.inf, 1, 0),
(np.inf, 0, 0),
(np.inf, np.inf, np.nan),
(1, np.inf, 1)
])
def test_infinite_arguments(self, a, x, desired):
result = sc.gammainc(a, x)
if np.isnan(desired):
assert np.isnan(result)
else:
assert result == desired
def test_infinite_limits(self):
# Test that large arguments converge to the hard-coded limits
# at infinity.
assert_allclose(
sc.gammainc(1000, 100),
sc.gammainc(np.inf, 100),
atol=1e-200, # Use `atol` since the function converges to 0.
rtol=0
)
assert sc.gammainc(100, 1000) == sc.gammainc(100, np.inf)
def test_x_zero(self):
a = np.arange(1, 10)
assert_array_equal(sc.gammainc(a, 0), 0)
def test_limit_check(self):
result = sc.gammainc(1e-10, 1)
limit = sc.gammainc(0, 1)
assert np.isclose(result, limit)
def gammainc_line(self, x):
# The line a = x where a simpler asymptotic expansion (analog
# of DLMF 8.12.15) is available.
c = np.array([-1/3, -1/540, 25/6048, 101/155520,
-3184811/3695155200, -2745493/8151736420])
res = 0
xfac = 1
for ck in c:
res -= ck*xfac
xfac /= x
res /= np.sqrt(2*np.pi*x)
res += 0.5
return res
def test_line(self):
x = np.logspace(np.log10(25), 300, 500)
a = x
dataset = np.vstack((a, x, self.gammainc_line(x))).T
FuncData(sc.gammainc, dataset, (0, 1), 2, rtol=1e-11).check()
def test_roundtrip(self):
a = np.logspace(-5, 10, 100)
x = np.logspace(-5, 10, 100)
y = sc.gammaincinv(a, sc.gammainc(a, x))
assert_allclose(x, y, rtol=1e-10)
class TestGammaincc(object):
@pytest.mark.parametrize('a, x', INVALID_POINTS)
def test_domain(self, a, x):
assert np.isnan(sc.gammaincc(a, x))
def test_a_eq_0_x_gt_0(self):
assert sc.gammaincc(0, 1) == 0
@pytest.mark.parametrize('a, x, desired', [
(np.inf, 1, 1),
(np.inf, 0, 1),
(np.inf, np.inf, np.nan),
(1, np.inf, 0)
])
def test_infinite_arguments(self, a, x, desired):
result = sc.gammaincc(a, x)
if np.isnan(desired):
assert np.isnan(result)
else:
assert result == desired
def test_infinite_limits(self):
# Test that large arguments converge to the hard-coded limits
# at infinity.
assert sc.gammaincc(1000, 100) == sc.gammaincc(np.inf, 100)
assert_allclose(
sc.gammaincc(100, 1000),
sc.gammaincc(100, np.inf),
atol=1e-200, # Use `atol` since the function converges to 0.
rtol=0
)
def test_limit_check(self):
result = sc.gammaincc(1e-10,1)
limit = sc.gammaincc(0,1)
assert np.isclose(result, limit)
def test_x_zero(self):
a = np.arange(1, 10)
assert_array_equal(sc.gammaincc(a, 0), 1)
def test_roundtrip(self):
a = np.logspace(-5, 10, 100)
x = np.logspace(-5, 10, 100)
y = sc.gammainccinv(a, sc.gammaincc(a, x))
assert_allclose(x, y, rtol=1e-14)