Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
122 lines
3.2 KiB
122 lines
3.2 KiB
4 years ago
|
__docformat__ = "restructuredtext en"
|
||
|
|
||
|
__all__ = []
|
||
|
|
||
|
|
||
|
from numpy import asanyarray, asarray, array, matrix, zeros
|
||
|
from scipy.sparse.sputils import asmatrix
|
||
|
|
||
|
from scipy.sparse.linalg.interface import aslinearoperator, LinearOperator, \
|
||
|
IdentityOperator
|
||
|
|
||
|
_coerce_rules = {('f','f'):'f', ('f','d'):'d', ('f','F'):'F',
|
||
|
('f','D'):'D', ('d','f'):'d', ('d','d'):'d',
|
||
|
('d','F'):'D', ('d','D'):'D', ('F','f'):'F',
|
||
|
('F','d'):'D', ('F','F'):'F', ('F','D'):'D',
|
||
|
('D','f'):'D', ('D','d'):'D', ('D','F'):'D',
|
||
|
('D','D'):'D'}
|
||
|
|
||
|
|
||
|
def coerce(x,y):
|
||
|
if x not in 'fdFD':
|
||
|
x = 'd'
|
||
|
if y not in 'fdFD':
|
||
|
y = 'd'
|
||
|
return _coerce_rules[x,y]
|
||
|
|
||
|
|
||
|
def id(x):
|
||
|
return x
|
||
|
|
||
|
|
||
|
def make_system(A, M, x0, b):
|
||
|
"""Make a linear system Ax=b
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
A : LinearOperator
|
||
|
sparse or dense matrix (or any valid input to aslinearoperator)
|
||
|
M : {LinearOperator, Nones}
|
||
|
preconditioner
|
||
|
sparse or dense matrix (or any valid input to aslinearoperator)
|
||
|
x0 : {array_like, None}
|
||
|
initial guess to iterative method
|
||
|
b : array_like
|
||
|
right hand side
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
(A, M, x, b, postprocess)
|
||
|
A : LinearOperator
|
||
|
matrix of the linear system
|
||
|
M : LinearOperator
|
||
|
preconditioner
|
||
|
x : rank 1 ndarray
|
||
|
initial guess
|
||
|
b : rank 1 ndarray
|
||
|
right hand side
|
||
|
postprocess : function
|
||
|
converts the solution vector to the appropriate
|
||
|
type and dimensions (e.g. (N,1) matrix)
|
||
|
|
||
|
"""
|
||
|
A_ = A
|
||
|
A = aslinearoperator(A)
|
||
|
|
||
|
if A.shape[0] != A.shape[1]:
|
||
|
raise ValueError('expected square matrix, but got shape=%s' % (A.shape,))
|
||
|
|
||
|
N = A.shape[0]
|
||
|
|
||
|
b = asanyarray(b)
|
||
|
|
||
|
if not (b.shape == (N,1) or b.shape == (N,)):
|
||
|
raise ValueError('A and b have incompatible dimensions')
|
||
|
|
||
|
if b.dtype.char not in 'fdFD':
|
||
|
b = b.astype('d') # upcast non-FP types to double
|
||
|
|
||
|
def postprocess(x):
|
||
|
if isinstance(b,matrix):
|
||
|
x = asmatrix(x)
|
||
|
return x.reshape(b.shape)
|
||
|
|
||
|
if hasattr(A,'dtype'):
|
||
|
xtype = A.dtype.char
|
||
|
else:
|
||
|
xtype = A.matvec(b).dtype.char
|
||
|
xtype = coerce(xtype, b.dtype.char)
|
||
|
|
||
|
b = asarray(b,dtype=xtype) # make b the same type as x
|
||
|
b = b.ravel()
|
||
|
|
||
|
if x0 is None:
|
||
|
x = zeros(N, dtype=xtype)
|
||
|
else:
|
||
|
x = array(x0, dtype=xtype)
|
||
|
if not (x.shape == (N,1) or x.shape == (N,)):
|
||
|
raise ValueError('A and x have incompatible dimensions')
|
||
|
x = x.ravel()
|
||
|
|
||
|
# process preconditioner
|
||
|
if M is None:
|
||
|
if hasattr(A_,'psolve'):
|
||
|
psolve = A_.psolve
|
||
|
else:
|
||
|
psolve = id
|
||
|
if hasattr(A_,'rpsolve'):
|
||
|
rpsolve = A_.rpsolve
|
||
|
else:
|
||
|
rpsolve = id
|
||
|
if psolve is id and rpsolve is id:
|
||
|
M = IdentityOperator(shape=A.shape, dtype=A.dtype)
|
||
|
else:
|
||
|
M = LinearOperator(A.shape, matvec=psolve, rmatvec=rpsolve,
|
||
|
dtype=A.dtype)
|
||
|
else:
|
||
|
M = aslinearoperator(M)
|
||
|
if A.shape != M.shape:
|
||
|
raise ValueError('matrix and preconditioner have different shapes')
|
||
|
|
||
|
return A, M, x, b, postprocess
|