1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/venv/lib/python3.9/site-packages/scipy/sparse/coo.py

618 lines
22 KiB

""" A sparse matrix in COOrdinate or 'triplet' format"""
__docformat__ = "restructuredtext en"
__all__ = ['coo_matrix', 'isspmatrix_coo']
from warnings import warn
import numpy as np
from ._sparsetools import coo_tocsr, coo_todense, coo_matvec
from .base import isspmatrix, SparseEfficiencyWarning, spmatrix
from .data import _data_matrix, _minmax_mixin
from .sputils import (upcast, upcast_char, to_native, isshape, getdtype,
get_index_dtype, downcast_intp_index, check_shape,
check_reshape_kwargs, matrix)
import operator
class coo_matrix(_data_matrix, _minmax_mixin):
"""
A sparse matrix in COOrdinate format.
Also known as the 'ijv' or 'triplet' format.
This can be instantiated in several ways:
coo_matrix(D)
with a dense matrix D
coo_matrix(S)
with another sparse matrix S (equivalent to S.tocoo())
coo_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N)
dtype is optional, defaulting to dtype='d'.
coo_matrix((data, (i, j)), [shape=(M, N)])
to construct from three arrays:
1. data[:] the entries of the matrix, in any order
2. i[:] the row indices of the matrix entries
3. j[:] the column indices of the matrix entries
Where ``A[i[k], j[k]] = data[k]``. When shape is not
specified, it is inferred from the index arrays
Attributes
----------
dtype : dtype
Data type of the matrix
shape : 2-tuple
Shape of the matrix
ndim : int
Number of dimensions (this is always 2)
nnz
Number of stored values, including explicit zeros
data
COO format data array of the matrix
row
COO format row index array of the matrix
col
COO format column index array of the matrix
Notes
-----
Sparse matrices can be used in arithmetic operations: they support
addition, subtraction, multiplication, division, and matrix power.
Advantages of the COO format
- facilitates fast conversion among sparse formats
- permits duplicate entries (see example)
- very fast conversion to and from CSR/CSC formats
Disadvantages of the COO format
- does not directly support:
+ arithmetic operations
+ slicing
Intended Usage
- COO is a fast format for constructing sparse matrices
- Once a matrix has been constructed, convert to CSR or
CSC format for fast arithmetic and matrix vector operations
- By default when converting to CSR or CSC format, duplicate (i,j)
entries will be summed together. This facilitates efficient
construction of finite element matrices and the like. (see example)
Examples
--------
>>> # Constructing an empty matrix
>>> from scipy.sparse import coo_matrix
>>> coo_matrix((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)
>>> # Constructing a matrix using ijv format
>>> row = np.array([0, 3, 1, 0])
>>> col = np.array([0, 3, 1, 2])
>>> data = np.array([4, 5, 7, 9])
>>> coo_matrix((data, (row, col)), shape=(4, 4)).toarray()
array([[4, 0, 9, 0],
[0, 7, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 5]])
>>> # Constructing a matrix with duplicate indices
>>> row = np.array([0, 0, 1, 3, 1, 0, 0])
>>> col = np.array([0, 2, 1, 3, 1, 0, 0])
>>> data = np.array([1, 1, 1, 1, 1, 1, 1])
>>> coo = coo_matrix((data, (row, col)), shape=(4, 4))
>>> # Duplicate indices are maintained until implicitly or explicitly summed
>>> np.max(coo.data)
1
>>> coo.toarray()
array([[3, 0, 1, 0],
[0, 2, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 1]])
"""
format = 'coo'
def __init__(self, arg1, shape=None, dtype=None, copy=False):
_data_matrix.__init__(self)
if isinstance(arg1, tuple):
if isshape(arg1):
M, N = arg1
self._shape = check_shape((M, N))
idx_dtype = get_index_dtype(maxval=max(M, N))
self.row = np.array([], dtype=idx_dtype)
self.col = np.array([], dtype=idx_dtype)
self.data = np.array([], getdtype(dtype, default=float))
self.has_canonical_format = True
else:
try:
obj, (row, col) = arg1
except (TypeError, ValueError):
raise TypeError('invalid input format')
if shape is None:
if len(row) == 0 or len(col) == 0:
raise ValueError('cannot infer dimensions from zero '
'sized index arrays')
M = operator.index(np.max(row)) + 1
N = operator.index(np.max(col)) + 1
self._shape = check_shape((M, N))
else:
# Use 2 steps to ensure shape has length 2.
M, N = shape
self._shape = check_shape((M, N))
idx_dtype = get_index_dtype(maxval=max(self.shape))
self.row = np.array(row, copy=copy, dtype=idx_dtype)
self.col = np.array(col, copy=copy, dtype=idx_dtype)
self.data = np.array(obj, copy=copy)
self.has_canonical_format = False
else:
if isspmatrix(arg1):
if isspmatrix_coo(arg1) and copy:
self.row = arg1.row.copy()
self.col = arg1.col.copy()
self.data = arg1.data.copy()
self._shape = check_shape(arg1.shape)
else:
coo = arg1.tocoo()
self.row = coo.row
self.col = coo.col
self.data = coo.data
self._shape = check_shape(coo.shape)
self.has_canonical_format = False
else:
#dense argument
M = np.atleast_2d(np.asarray(arg1))
if M.ndim != 2:
raise TypeError('expected dimension <= 2 array or matrix')
self._shape = check_shape(M.shape)
if shape is not None:
if check_shape(shape) != self._shape:
raise ValueError('inconsistent shapes: %s != %s' %
(shape, self._shape))
self.row, self.col = M.nonzero()
self.data = M[self.row, self.col]
self.has_canonical_format = True
if dtype is not None:
self.data = self.data.astype(dtype, copy=False)
self._check()
def reshape(self, *args, **kwargs):
shape = check_shape(args, self.shape)
order, copy = check_reshape_kwargs(kwargs)
# Return early if reshape is not required
if shape == self.shape:
if copy:
return self.copy()
else:
return self
nrows, ncols = self.shape
if order == 'C':
# Upcast to avoid overflows: the coo_matrix constructor
# below will downcast the results to a smaller dtype, if
# possible.
dtype = get_index_dtype(maxval=(ncols * max(0, nrows - 1) + max(0, ncols - 1)))
flat_indices = np.multiply(ncols, self.row, dtype=dtype) + self.col
new_row, new_col = divmod(flat_indices, shape[1])
elif order == 'F':
dtype = get_index_dtype(maxval=(nrows * max(0, ncols - 1) + max(0, nrows - 1)))
flat_indices = np.multiply(nrows, self.col, dtype=dtype) + self.row
new_col, new_row = divmod(flat_indices, shape[0])
else:
raise ValueError("'order' must be 'C' or 'F'")
# Handle copy here rather than passing on to the constructor so that no
# copy will be made of new_row and new_col regardless
if copy:
new_data = self.data.copy()
else:
new_data = self.data
return coo_matrix((new_data, (new_row, new_col)),
shape=shape, copy=False)
reshape.__doc__ = spmatrix.reshape.__doc__
def getnnz(self, axis=None):
if axis is None:
nnz = len(self.data)
if nnz != len(self.row) or nnz != len(self.col):
raise ValueError('row, column, and data array must all be the '
'same length')
if self.data.ndim != 1 or self.row.ndim != 1 or \
self.col.ndim != 1:
raise ValueError('row, column, and data arrays must be 1-D')
return int(nnz)
if axis < 0:
axis += 2
if axis == 0:
return np.bincount(downcast_intp_index(self.col),
minlength=self.shape[1])
elif axis == 1:
return np.bincount(downcast_intp_index(self.row),
minlength=self.shape[0])
else:
raise ValueError('axis out of bounds')
getnnz.__doc__ = spmatrix.getnnz.__doc__
def _check(self):
""" Checks data structure for consistency """
# index arrays should have integer data types
if self.row.dtype.kind != 'i':
warn("row index array has non-integer dtype (%s) "
% self.row.dtype.name)
if self.col.dtype.kind != 'i':
warn("col index array has non-integer dtype (%s) "
% self.col.dtype.name)
idx_dtype = get_index_dtype(maxval=max(self.shape))
self.row = np.asarray(self.row, dtype=idx_dtype)
self.col = np.asarray(self.col, dtype=idx_dtype)
self.data = to_native(self.data)
if self.nnz > 0:
if self.row.max() >= self.shape[0]:
raise ValueError('row index exceeds matrix dimensions')
if self.col.max() >= self.shape[1]:
raise ValueError('column index exceeds matrix dimensions')
if self.row.min() < 0:
raise ValueError('negative row index found')
if self.col.min() < 0:
raise ValueError('negative column index found')
def transpose(self, axes=None, copy=False):
if axes is not None:
raise ValueError(("Sparse matrices do not support "
"an 'axes' parameter because swapping "
"dimensions is the only logical permutation."))
M, N = self.shape
return coo_matrix((self.data, (self.col, self.row)),
shape=(N, M), copy=copy)
transpose.__doc__ = spmatrix.transpose.__doc__
def resize(self, *shape):
shape = check_shape(shape)
new_M, new_N = shape
M, N = self.shape
if new_M < M or new_N < N:
mask = np.logical_and(self.row < new_M, self.col < new_N)
if not mask.all():
self.row = self.row[mask]
self.col = self.col[mask]
self.data = self.data[mask]
self._shape = shape
resize.__doc__ = spmatrix.resize.__doc__
def toarray(self, order=None, out=None):
"""See the docstring for `spmatrix.toarray`."""
B = self._process_toarray_args(order, out)
fortran = int(B.flags.f_contiguous)
if not fortran and not B.flags.c_contiguous:
raise ValueError("Output array must be C or F contiguous")
M,N = self.shape
coo_todense(M, N, self.nnz, self.row, self.col, self.data,
B.ravel('A'), fortran)
return B
def tocsc(self, copy=False):
"""Convert this matrix to Compressed Sparse Column format
Duplicate entries will be summed together.
Examples
--------
>>> from numpy import array
>>> from scipy.sparse import coo_matrix
>>> row = array([0, 0, 1, 3, 1, 0, 0])
>>> col = array([0, 2, 1, 3, 1, 0, 0])
>>> data = array([1, 1, 1, 1, 1, 1, 1])
>>> A = coo_matrix((data, (row, col)), shape=(4, 4)).tocsc()
>>> A.toarray()
array([[3, 0, 1, 0],
[0, 2, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 1]])
"""
from .csc import csc_matrix
if self.nnz == 0:
return csc_matrix(self.shape, dtype=self.dtype)
else:
M,N = self.shape
idx_dtype = get_index_dtype((self.col, self.row),
maxval=max(self.nnz, M))
row = self.row.astype(idx_dtype, copy=False)
col = self.col.astype(idx_dtype, copy=False)
indptr = np.empty(N + 1, dtype=idx_dtype)
indices = np.empty_like(row, dtype=idx_dtype)
data = np.empty_like(self.data, dtype=upcast(self.dtype))
coo_tocsr(N, M, self.nnz, col, row, self.data,
indptr, indices, data)
x = csc_matrix((data, indices, indptr), shape=self.shape)
if not self.has_canonical_format:
x.sum_duplicates()
return x
def tocsr(self, copy=False):
"""Convert this matrix to Compressed Sparse Row format
Duplicate entries will be summed together.
Examples
--------
>>> from numpy import array
>>> from scipy.sparse import coo_matrix
>>> row = array([0, 0, 1, 3, 1, 0, 0])
>>> col = array([0, 2, 1, 3, 1, 0, 0])
>>> data = array([1, 1, 1, 1, 1, 1, 1])
>>> A = coo_matrix((data, (row, col)), shape=(4, 4)).tocsr()
>>> A.toarray()
array([[3, 0, 1, 0],
[0, 2, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 1]])
"""
from .csr import csr_matrix
if self.nnz == 0:
return csr_matrix(self.shape, dtype=self.dtype)
else:
M,N = self.shape
idx_dtype = get_index_dtype((self.row, self.col),
maxval=max(self.nnz, N))
row = self.row.astype(idx_dtype, copy=False)
col = self.col.astype(idx_dtype, copy=False)
indptr = np.empty(M + 1, dtype=idx_dtype)
indices = np.empty_like(col, dtype=idx_dtype)
data = np.empty_like(self.data, dtype=upcast(self.dtype))
coo_tocsr(M, N, self.nnz, row, col, self.data,
indptr, indices, data)
x = csr_matrix((data, indices, indptr), shape=self.shape)
if not self.has_canonical_format:
x.sum_duplicates()
return x
def tocoo(self, copy=False):
if copy:
return self.copy()
else:
return self
tocoo.__doc__ = spmatrix.tocoo.__doc__
def todia(self, copy=False):
from .dia import dia_matrix
self.sum_duplicates()
ks = self.col - self.row # the diagonal for each nonzero
diags, diag_idx = np.unique(ks, return_inverse=True)
if len(diags) > 100:
# probably undesired, should todia() have a maxdiags parameter?
warn("Constructing a DIA matrix with %d diagonals "
"is inefficient" % len(diags), SparseEfficiencyWarning)
#initialize and fill in data array
if self.data.size == 0:
data = np.zeros((0, 0), dtype=self.dtype)
else:
data = np.zeros((len(diags), self.col.max()+1), dtype=self.dtype)
data[diag_idx, self.col] = self.data
return dia_matrix((data,diags), shape=self.shape)
todia.__doc__ = spmatrix.todia.__doc__
def todok(self, copy=False):
from .dok import dok_matrix
self.sum_duplicates()
dok = dok_matrix((self.shape), dtype=self.dtype)
dok._update(zip(zip(self.row,self.col),self.data))
return dok
todok.__doc__ = spmatrix.todok.__doc__
def diagonal(self, k=0):
rows, cols = self.shape
if k <= -rows or k >= cols:
return np.empty(0, dtype=self.data.dtype)
diag = np.zeros(min(rows + min(k, 0), cols - max(k, 0)),
dtype=self.dtype)
diag_mask = (self.row + k) == self.col
if self.has_canonical_format:
row = self.row[diag_mask]
data = self.data[diag_mask]
else:
row, _, data = self._sum_duplicates(self.row[diag_mask],
self.col[diag_mask],
self.data[diag_mask])
diag[row + min(k, 0)] = data
return diag
diagonal.__doc__ = _data_matrix.diagonal.__doc__
def _setdiag(self, values, k):
M, N = self.shape
if values.ndim and not len(values):
return
idx_dtype = self.row.dtype
# Determine which triples to keep and where to put the new ones.
full_keep = self.col - self.row != k
if k < 0:
max_index = min(M+k, N)
if values.ndim:
max_index = min(max_index, len(values))
keep = np.logical_or(full_keep, self.col >= max_index)
new_row = np.arange(-k, -k + max_index, dtype=idx_dtype)
new_col = np.arange(max_index, dtype=idx_dtype)
else:
max_index = min(M, N-k)
if values.ndim:
max_index = min(max_index, len(values))
keep = np.logical_or(full_keep, self.row >= max_index)
new_row = np.arange(max_index, dtype=idx_dtype)
new_col = np.arange(k, k + max_index, dtype=idx_dtype)
# Define the array of data consisting of the entries to be added.
if values.ndim:
new_data = values[:max_index]
else:
new_data = np.empty(max_index, dtype=self.dtype)
new_data[:] = values
# Update the internal structure.
self.row = np.concatenate((self.row[keep], new_row))
self.col = np.concatenate((self.col[keep], new_col))
self.data = np.concatenate((self.data[keep], new_data))
self.has_canonical_format = False
# needed by _data_matrix
def _with_data(self,data,copy=True):
"""Returns a matrix with the same sparsity structure as self,
but with different data. By default the index arrays
(i.e. .row and .col) are copied.
"""
if copy:
return coo_matrix((data, (self.row.copy(), self.col.copy())),
shape=self.shape, dtype=data.dtype)
else:
return coo_matrix((data, (self.row, self.col)),
shape=self.shape, dtype=data.dtype)
def sum_duplicates(self):
"""Eliminate duplicate matrix entries by adding them together
This is an *in place* operation
"""
if self.has_canonical_format:
return
summed = self._sum_duplicates(self.row, self.col, self.data)
self.row, self.col, self.data = summed
self.has_canonical_format = True
def _sum_duplicates(self, row, col, data):
# Assumes (data, row, col) not in canonical format.
if len(data) == 0:
return row, col, data
order = np.lexsort((row, col))
row = row[order]
col = col[order]
data = data[order]
unique_mask = ((row[1:] != row[:-1]) |
(col[1:] != col[:-1]))
unique_mask = np.append(True, unique_mask)
row = row[unique_mask]
col = col[unique_mask]
unique_inds, = np.nonzero(unique_mask)
data = np.add.reduceat(data, unique_inds, dtype=self.dtype)
return row, col, data
def eliminate_zeros(self):
"""Remove zero entries from the matrix
This is an *in place* operation
"""
mask = self.data != 0
self.data = self.data[mask]
self.row = self.row[mask]
self.col = self.col[mask]
#######################
# Arithmetic handlers #
#######################
def _add_dense(self, other):
if other.shape != self.shape:
raise ValueError('Incompatible shapes.')
dtype = upcast_char(self.dtype.char, other.dtype.char)
result = np.array(other, dtype=dtype, copy=True)
fortran = int(result.flags.f_contiguous)
M, N = self.shape
coo_todense(M, N, self.nnz, self.row, self.col, self.data,
result.ravel('A'), fortran)
return matrix(result, copy=False)
def _mul_vector(self, other):
#output array
result = np.zeros(self.shape[0], dtype=upcast_char(self.dtype.char,
other.dtype.char))
coo_matvec(self.nnz, self.row, self.col, self.data, other, result)
return result
def _mul_multivector(self, other):
result = np.zeros((other.shape[1], self.shape[0]),
dtype=upcast_char(self.dtype.char, other.dtype.char))
for i, col in enumerate(other.T):
coo_matvec(self.nnz, self.row, self.col, self.data, col, result[i])
return result.T.view(type=type(other))
def isspmatrix_coo(x):
"""Is x of coo_matrix type?
Parameters
----------
x
object to check for being a coo matrix
Returns
-------
bool
True if x is a coo matrix, False otherwise
Examples
--------
>>> from scipy.sparse import coo_matrix, isspmatrix_coo
>>> isspmatrix_coo(coo_matrix([[5]]))
True
>>> from scipy.sparse import coo_matrix, csr_matrix, isspmatrix_coo
>>> isspmatrix_coo(csr_matrix([[5]]))
False
"""
return isinstance(x, coo_matrix)