Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
114 lines
3.4 KiB
114 lines
3.4 KiB
4 years ago
|
import math
|
||
|
import numpy as np
|
||
|
|
||
|
from numpy.testing import assert_allclose, assert_
|
||
|
|
||
|
from scipy.optimize import fmin_cobyla, minimize
|
||
|
|
||
|
|
||
|
class TestCobyla(object):
|
||
|
def setup_method(self):
|
||
|
self.x0 = [4.95, 0.66]
|
||
|
self.solution = [math.sqrt(25 - (2.0/3)**2), 2.0/3]
|
||
|
self.opts = {'disp': False, 'rhobeg': 1, 'tol': 1e-5,
|
||
|
'maxiter': 100}
|
||
|
|
||
|
def fun(self, x):
|
||
|
return x[0]**2 + abs(x[1])**3
|
||
|
|
||
|
def con1(self, x):
|
||
|
return x[0]**2 + x[1]**2 - 25
|
||
|
|
||
|
def con2(self, x):
|
||
|
return -self.con1(x)
|
||
|
|
||
|
def test_simple(self):
|
||
|
# use disp=True as smoke test for gh-8118
|
||
|
x = fmin_cobyla(self.fun, self.x0, [self.con1, self.con2], rhobeg=1,
|
||
|
rhoend=1e-5, maxfun=100, disp=True)
|
||
|
assert_allclose(x, self.solution, atol=1e-4)
|
||
|
|
||
|
def test_minimize_simple(self):
|
||
|
# Minimize with method='COBYLA'
|
||
|
cons = ({'type': 'ineq', 'fun': self.con1},
|
||
|
{'type': 'ineq', 'fun': self.con2})
|
||
|
sol = minimize(self.fun, self.x0, method='cobyla', constraints=cons,
|
||
|
options=self.opts)
|
||
|
assert_allclose(sol.x, self.solution, atol=1e-4)
|
||
|
assert_(sol.success, sol.message)
|
||
|
assert_(sol.maxcv < 1e-5, sol)
|
||
|
assert_(sol.nfev < 70, sol)
|
||
|
assert_(sol.fun < self.fun(self.solution) + 1e-3, sol)
|
||
|
|
||
|
def test_minimize_constraint_violation(self):
|
||
|
np.random.seed(1234)
|
||
|
pb = np.random.rand(10, 10)
|
||
|
spread = np.random.rand(10)
|
||
|
|
||
|
def p(w):
|
||
|
return pb.dot(w)
|
||
|
|
||
|
def f(w):
|
||
|
return -(w * spread).sum()
|
||
|
|
||
|
def c1(w):
|
||
|
return 500 - abs(p(w)).sum()
|
||
|
|
||
|
def c2(w):
|
||
|
return 5 - abs(p(w).sum())
|
||
|
|
||
|
def c3(w):
|
||
|
return 5 - abs(p(w)).max()
|
||
|
|
||
|
cons = ({'type': 'ineq', 'fun': c1},
|
||
|
{'type': 'ineq', 'fun': c2},
|
||
|
{'type': 'ineq', 'fun': c3})
|
||
|
w0 = np.zeros((10, 1))
|
||
|
sol = minimize(f, w0, method='cobyla', constraints=cons,
|
||
|
options={'catol': 1e-6})
|
||
|
assert_(sol.maxcv > 1e-6)
|
||
|
assert_(not sol.success)
|
||
|
|
||
|
|
||
|
def test_vector_constraints():
|
||
|
# test that fmin_cobyla and minimize can take a combination
|
||
|
# of constraints, some returning a number and others an array
|
||
|
def fun(x):
|
||
|
return (x[0] - 1)**2 + (x[1] - 2.5)**2
|
||
|
|
||
|
def fmin(x):
|
||
|
return fun(x) - 1
|
||
|
|
||
|
def cons1(x):
|
||
|
a = np.array([[1, -2, 2], [-1, -2, 6], [-1, 2, 2]])
|
||
|
return np.array([a[i, 0] * x[0] + a[i, 1] * x[1] +
|
||
|
a[i, 2] for i in range(len(a))])
|
||
|
|
||
|
def cons2(x):
|
||
|
return x # identity, acts as bounds x > 0
|
||
|
|
||
|
x0 = np.array([2, 0])
|
||
|
cons_list = [fun, cons1, cons2]
|
||
|
|
||
|
xsol = [1.4, 1.7]
|
||
|
fsol = 0.8
|
||
|
|
||
|
# testing fmin_cobyla
|
||
|
sol = fmin_cobyla(fun, x0, cons_list, rhoend=1e-5)
|
||
|
assert_allclose(sol, xsol, atol=1e-4)
|
||
|
|
||
|
sol = fmin_cobyla(fun, x0, fmin, rhoend=1e-5)
|
||
|
assert_allclose(fun(sol), 1, atol=1e-4)
|
||
|
|
||
|
# testing minimize
|
||
|
constraints = [{'type': 'ineq', 'fun': cons} for cons in cons_list]
|
||
|
sol = minimize(fun, x0, constraints=constraints, tol=1e-5)
|
||
|
assert_allclose(sol.x, xsol, atol=1e-4)
|
||
|
assert_(sol.success, sol.message)
|
||
|
assert_allclose(sol.fun, fsol, atol=1e-4)
|
||
|
|
||
|
constraints = {'type': 'ineq', 'fun': fmin}
|
||
|
sol = minimize(fun, x0, constraints=constraints, tol=1e-5)
|
||
|
assert_allclose(sol.fun, 1, atol=1e-4)
|
||
|
|