Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
179 lines
4.8 KiB
179 lines
4.8 KiB
4 years ago
|
"""Bounded-variable least-squares algorithm."""
|
||
|
import numpy as np
|
||
|
from numpy.linalg import norm, lstsq
|
||
|
from scipy.optimize import OptimizeResult
|
||
|
|
||
|
from .common import print_header_linear, print_iteration_linear
|
||
|
|
||
|
|
||
|
def compute_kkt_optimality(g, on_bound):
|
||
|
"""Compute the maximum violation of KKT conditions."""
|
||
|
g_kkt = g * on_bound
|
||
|
free_set = on_bound == 0
|
||
|
g_kkt[free_set] = np.abs(g[free_set])
|
||
|
return np.max(g_kkt)
|
||
|
|
||
|
|
||
|
def bvls(A, b, x_lsq, lb, ub, tol, max_iter, verbose):
|
||
|
m, n = A.shape
|
||
|
|
||
|
x = x_lsq.copy()
|
||
|
on_bound = np.zeros(n)
|
||
|
|
||
|
mask = x < lb
|
||
|
x[mask] = lb[mask]
|
||
|
on_bound[mask] = -1
|
||
|
|
||
|
mask = x > ub
|
||
|
x[mask] = ub[mask]
|
||
|
on_bound[mask] = 1
|
||
|
|
||
|
free_set = on_bound == 0
|
||
|
active_set = ~free_set
|
||
|
free_set, = np.nonzero(free_set)
|
||
|
|
||
|
r = A.dot(x) - b
|
||
|
cost = 0.5 * np.dot(r, r)
|
||
|
initial_cost = cost
|
||
|
g = A.T.dot(r)
|
||
|
|
||
|
cost_change = None
|
||
|
step_norm = None
|
||
|
iteration = 0
|
||
|
|
||
|
if verbose == 2:
|
||
|
print_header_linear()
|
||
|
|
||
|
# This is the initialization loop. The requirement is that the
|
||
|
# least-squares solution on free variables is feasible before BVLS starts.
|
||
|
# One possible initialization is to set all variables to lower or upper
|
||
|
# bounds, but many iterations may be required from this state later on.
|
||
|
# The implemented ad-hoc procedure which intuitively should give a better
|
||
|
# initial state: find the least-squares solution on current free variables,
|
||
|
# if its feasible then stop, otherwise, set violating variables to
|
||
|
# corresponding bounds and continue on the reduced set of free variables.
|
||
|
|
||
|
while free_set.size > 0:
|
||
|
if verbose == 2:
|
||
|
optimality = compute_kkt_optimality(g, on_bound)
|
||
|
print_iteration_linear(iteration, cost, cost_change, step_norm,
|
||
|
optimality)
|
||
|
|
||
|
iteration += 1
|
||
|
x_free_old = x[free_set].copy()
|
||
|
|
||
|
A_free = A[:, free_set]
|
||
|
b_free = b - A.dot(x * active_set)
|
||
|
z = lstsq(A_free, b_free, rcond=-1)[0]
|
||
|
|
||
|
lbv = z < lb[free_set]
|
||
|
ubv = z > ub[free_set]
|
||
|
v = lbv | ubv
|
||
|
|
||
|
if np.any(lbv):
|
||
|
ind = free_set[lbv]
|
||
|
x[ind] = lb[ind]
|
||
|
active_set[ind] = True
|
||
|
on_bound[ind] = -1
|
||
|
|
||
|
if np.any(ubv):
|
||
|
ind = free_set[ubv]
|
||
|
x[ind] = ub[ind]
|
||
|
active_set[ind] = True
|
||
|
on_bound[ind] = 1
|
||
|
|
||
|
ind = free_set[~v]
|
||
|
x[ind] = z[~v]
|
||
|
|
||
|
r = A.dot(x) - b
|
||
|
cost_new = 0.5 * np.dot(r, r)
|
||
|
cost_change = cost - cost_new
|
||
|
cost = cost_new
|
||
|
g = A.T.dot(r)
|
||
|
step_norm = norm(x[free_set] - x_free_old)
|
||
|
|
||
|
if np.any(v):
|
||
|
free_set = free_set[~v]
|
||
|
else:
|
||
|
break
|
||
|
|
||
|
if max_iter is None:
|
||
|
max_iter = n
|
||
|
max_iter += iteration
|
||
|
|
||
|
termination_status = None
|
||
|
|
||
|
# Main BVLS loop.
|
||
|
|
||
|
optimality = compute_kkt_optimality(g, on_bound)
|
||
|
for iteration in range(iteration, max_iter):
|
||
|
if verbose == 2:
|
||
|
print_iteration_linear(iteration, cost, cost_change,
|
||
|
step_norm, optimality)
|
||
|
|
||
|
if optimality < tol:
|
||
|
termination_status = 1
|
||
|
|
||
|
if termination_status is not None:
|
||
|
break
|
||
|
|
||
|
move_to_free = np.argmax(g * on_bound)
|
||
|
on_bound[move_to_free] = 0
|
||
|
free_set = on_bound == 0
|
||
|
active_set = ~free_set
|
||
|
free_set, = np.nonzero(free_set)
|
||
|
|
||
|
x_free = x[free_set]
|
||
|
x_free_old = x_free.copy()
|
||
|
lb_free = lb[free_set]
|
||
|
ub_free = ub[free_set]
|
||
|
|
||
|
A_free = A[:, free_set]
|
||
|
b_free = b - A.dot(x * active_set)
|
||
|
z = lstsq(A_free, b_free, rcond=-1)[0]
|
||
|
|
||
|
lbv, = np.nonzero(z < lb_free)
|
||
|
ubv, = np.nonzero(z > ub_free)
|
||
|
v = np.hstack((lbv, ubv))
|
||
|
|
||
|
if v.size > 0:
|
||
|
alphas = np.hstack((
|
||
|
lb_free[lbv] - x_free[lbv],
|
||
|
ub_free[ubv] - x_free[ubv])) / (z[v] - x_free[v])
|
||
|
|
||
|
i = np.argmin(alphas)
|
||
|
i_free = v[i]
|
||
|
alpha = alphas[i]
|
||
|
|
||
|
x_free *= 1 - alpha
|
||
|
x_free += alpha * z
|
||
|
|
||
|
if i < lbv.size:
|
||
|
on_bound[free_set[i_free]] = -1
|
||
|
else:
|
||
|
on_bound[free_set[i_free]] = 1
|
||
|
else:
|
||
|
x_free = z
|
||
|
|
||
|
x[free_set] = x_free
|
||
|
step_norm = norm(x_free - x_free_old)
|
||
|
|
||
|
r = A.dot(x) - b
|
||
|
cost_new = 0.5 * np.dot(r, r)
|
||
|
cost_change = cost - cost_new
|
||
|
|
||
|
if cost_change < tol * cost:
|
||
|
termination_status = 2
|
||
|
cost = cost_new
|
||
|
|
||
|
g = A.T.dot(r)
|
||
|
optimality = compute_kkt_optimality(g, on_bound)
|
||
|
|
||
|
if termination_status is None:
|
||
|
termination_status = 0
|
||
|
|
||
|
return OptimizeResult(
|
||
|
x=x, fun=r, cost=cost, optimality=optimality, active_mask=on_bound,
|
||
|
nit=iteration + 1, status=termination_status,
|
||
|
initial_cost=initial_cost)
|