Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
296 lines
11 KiB
296 lines
11 KiB
4 years ago
|
#******************************************************************************
|
||
|
# Copyright (C) 2013 Kenneth L. Ho
|
||
|
# Redistribution and use in source and binary forms, with or without
|
||
|
# modification, are permitted provided that the following conditions are met:
|
||
|
#
|
||
|
# Redistributions of source code must retain the above copyright notice, this
|
||
|
# list of conditions and the following disclaimer. Redistributions in binary
|
||
|
# form must reproduce the above copyright notice, this list of conditions and
|
||
|
# the following disclaimer in the documentation and/or other materials
|
||
|
# provided with the distribution.
|
||
|
#
|
||
|
# None of the names of the copyright holders may be used to endorse or
|
||
|
# promote products derived from this software without specific prior written
|
||
|
# permission.
|
||
|
#
|
||
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
||
|
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
# POSSIBILITY OF SUCH DAMAGE.
|
||
|
#******************************************************************************
|
||
|
|
||
|
import scipy.linalg.interpolative as pymatrixid
|
||
|
import numpy as np
|
||
|
from scipy.linalg import hilbert, svdvals, norm
|
||
|
from scipy.sparse.linalg import aslinearoperator
|
||
|
from scipy.linalg.interpolative import interp_decomp
|
||
|
import time
|
||
|
import itertools
|
||
|
|
||
|
from numpy.testing import assert_, assert_allclose
|
||
|
from pytest import raises as assert_raises
|
||
|
|
||
|
|
||
|
def _debug_print(s):
|
||
|
if 0:
|
||
|
print(s)
|
||
|
|
||
|
|
||
|
class TestInterpolativeDecomposition(object):
|
||
|
def test_id(self):
|
||
|
for dtype in [np.float64, np.complex128]:
|
||
|
self.check_id(dtype)
|
||
|
|
||
|
def check_id(self, dtype):
|
||
|
# Test ID routines on a Hilbert matrix.
|
||
|
|
||
|
# set parameters
|
||
|
n = 300
|
||
|
eps = 1e-12
|
||
|
|
||
|
# construct Hilbert matrix
|
||
|
A = hilbert(n).astype(dtype)
|
||
|
if np.issubdtype(dtype, np.complexfloating):
|
||
|
A = A * (1 + 1j)
|
||
|
L = aslinearoperator(A)
|
||
|
|
||
|
# find rank
|
||
|
S = np.linalg.svd(A, compute_uv=False)
|
||
|
try:
|
||
|
rank = np.nonzero(S < eps)[0][0]
|
||
|
except IndexError:
|
||
|
rank = n
|
||
|
|
||
|
# print input summary
|
||
|
_debug_print("Hilbert matrix dimension: %8i" % n)
|
||
|
_debug_print("Working precision: %8.2e" % eps)
|
||
|
_debug_print("Rank to working precision: %8i" % rank)
|
||
|
|
||
|
# set print format
|
||
|
fmt = "%8.2e (s) / %5s"
|
||
|
|
||
|
# test real ID routines
|
||
|
_debug_print("-----------------------------------------")
|
||
|
_debug_print("Real ID routines")
|
||
|
_debug_print("-----------------------------------------")
|
||
|
|
||
|
# fixed precision
|
||
|
_debug_print("Calling iddp_id / idzp_id ...",)
|
||
|
t0 = time.time()
|
||
|
k, idx, proj = pymatrixid.interp_decomp(A, eps, rand=False)
|
||
|
t = time.time() - t0
|
||
|
B = pymatrixid.reconstruct_matrix_from_id(A[:, idx[:k]], idx, proj)
|
||
|
_debug_print(fmt % (t, np.allclose(A, B, eps)))
|
||
|
assert_(np.allclose(A, B, eps))
|
||
|
|
||
|
_debug_print("Calling iddp_aid / idzp_aid ...",)
|
||
|
t0 = time.time()
|
||
|
k, idx, proj = pymatrixid.interp_decomp(A, eps)
|
||
|
t = time.time() - t0
|
||
|
B = pymatrixid.reconstruct_matrix_from_id(A[:, idx[:k]], idx, proj)
|
||
|
_debug_print(fmt % (t, np.allclose(A, B, eps)))
|
||
|
assert_(np.allclose(A, B, eps))
|
||
|
|
||
|
_debug_print("Calling iddp_rid / idzp_rid ...",)
|
||
|
t0 = time.time()
|
||
|
k, idx, proj = pymatrixid.interp_decomp(L, eps)
|
||
|
t = time.time() - t0
|
||
|
B = pymatrixid.reconstruct_matrix_from_id(A[:, idx[:k]], idx, proj)
|
||
|
_debug_print(fmt % (t, np.allclose(A, B, eps)))
|
||
|
assert_(np.allclose(A, B, eps))
|
||
|
|
||
|
# fixed rank
|
||
|
k = rank
|
||
|
|
||
|
_debug_print("Calling iddr_id / idzr_id ...",)
|
||
|
t0 = time.time()
|
||
|
idx, proj = pymatrixid.interp_decomp(A, k, rand=False)
|
||
|
t = time.time() - t0
|
||
|
B = pymatrixid.reconstruct_matrix_from_id(A[:, idx[:k]], idx, proj)
|
||
|
_debug_print(fmt % (t, np.allclose(A, B, eps)))
|
||
|
assert_(np.allclose(A, B, eps))
|
||
|
|
||
|
_debug_print("Calling iddr_aid / idzr_aid ...",)
|
||
|
t0 = time.time()
|
||
|
idx, proj = pymatrixid.interp_decomp(A, k)
|
||
|
t = time.time() - t0
|
||
|
B = pymatrixid.reconstruct_matrix_from_id(A[:, idx[:k]], idx, proj)
|
||
|
_debug_print(fmt % (t, np.allclose(A, B, eps)))
|
||
|
assert_(np.allclose(A, B, eps))
|
||
|
|
||
|
_debug_print("Calling iddr_rid / idzr_rid ...",)
|
||
|
t0 = time.time()
|
||
|
idx, proj = pymatrixid.interp_decomp(L, k)
|
||
|
t = time.time() - t0
|
||
|
B = pymatrixid.reconstruct_matrix_from_id(A[:, idx[:k]], idx, proj)
|
||
|
_debug_print(fmt % (t, np.allclose(A, B, eps)))
|
||
|
assert_(np.allclose(A, B, eps))
|
||
|
|
||
|
# check skeleton and interpolation matrices
|
||
|
idx, proj = pymatrixid.interp_decomp(A, k, rand=False)
|
||
|
P = pymatrixid.reconstruct_interp_matrix(idx, proj)
|
||
|
B = pymatrixid.reconstruct_skel_matrix(A, k, idx)
|
||
|
assert_(np.allclose(B, A[:,idx[:k]], eps))
|
||
|
assert_(np.allclose(B.dot(P), A, eps))
|
||
|
|
||
|
# test SVD routines
|
||
|
_debug_print("-----------------------------------------")
|
||
|
_debug_print("SVD routines")
|
||
|
_debug_print("-----------------------------------------")
|
||
|
|
||
|
# fixed precision
|
||
|
_debug_print("Calling iddp_svd / idzp_svd ...",)
|
||
|
t0 = time.time()
|
||
|
U, S, V = pymatrixid.svd(A, eps, rand=False)
|
||
|
t = time.time() - t0
|
||
|
B = np.dot(U, np.dot(np.diag(S), V.T.conj()))
|
||
|
_debug_print(fmt % (t, np.allclose(A, B, eps)))
|
||
|
assert_(np.allclose(A, B, eps))
|
||
|
|
||
|
_debug_print("Calling iddp_asvd / idzp_asvd...",)
|
||
|
t0 = time.time()
|
||
|
U, S, V = pymatrixid.svd(A, eps)
|
||
|
t = time.time() - t0
|
||
|
B = np.dot(U, np.dot(np.diag(S), V.T.conj()))
|
||
|
_debug_print(fmt % (t, np.allclose(A, B, eps)))
|
||
|
assert_(np.allclose(A, B, eps))
|
||
|
|
||
|
_debug_print("Calling iddp_rsvd / idzp_rsvd...",)
|
||
|
t0 = time.time()
|
||
|
U, S, V = pymatrixid.svd(L, eps)
|
||
|
t = time.time() - t0
|
||
|
B = np.dot(U, np.dot(np.diag(S), V.T.conj()))
|
||
|
_debug_print(fmt % (t, np.allclose(A, B, eps)))
|
||
|
assert_(np.allclose(A, B, eps))
|
||
|
|
||
|
# fixed rank
|
||
|
k = rank
|
||
|
|
||
|
_debug_print("Calling iddr_svd / idzr_svd ...",)
|
||
|
t0 = time.time()
|
||
|
U, S, V = pymatrixid.svd(A, k, rand=False)
|
||
|
t = time.time() - t0
|
||
|
B = np.dot(U, np.dot(np.diag(S), V.T.conj()))
|
||
|
_debug_print(fmt % (t, np.allclose(A, B, eps)))
|
||
|
assert_(np.allclose(A, B, eps))
|
||
|
|
||
|
_debug_print("Calling iddr_asvd / idzr_asvd ...",)
|
||
|
t0 = time.time()
|
||
|
U, S, V = pymatrixid.svd(A, k)
|
||
|
t = time.time() - t0
|
||
|
B = np.dot(U, np.dot(np.diag(S), V.T.conj()))
|
||
|
_debug_print(fmt % (t, np.allclose(A, B, eps)))
|
||
|
assert_(np.allclose(A, B, eps))
|
||
|
|
||
|
_debug_print("Calling iddr_rsvd / idzr_rsvd ...",)
|
||
|
t0 = time.time()
|
||
|
U, S, V = pymatrixid.svd(L, k)
|
||
|
t = time.time() - t0
|
||
|
B = np.dot(U, np.dot(np.diag(S), V.T.conj()))
|
||
|
_debug_print(fmt % (t, np.allclose(A, B, eps)))
|
||
|
assert_(np.allclose(A, B, eps))
|
||
|
|
||
|
# ID to SVD
|
||
|
idx, proj = pymatrixid.interp_decomp(A, k, rand=False)
|
||
|
Up, Sp, Vp = pymatrixid.id_to_svd(A[:, idx[:k]], idx, proj)
|
||
|
B = U.dot(np.diag(S).dot(V.T.conj()))
|
||
|
assert_(np.allclose(A, B, eps))
|
||
|
|
||
|
# Norm estimates
|
||
|
s = svdvals(A)
|
||
|
norm_2_est = pymatrixid.estimate_spectral_norm(A)
|
||
|
assert_(np.allclose(norm_2_est, s[0], 1e-6))
|
||
|
|
||
|
B = A.copy()
|
||
|
B[:,0] *= 1.2
|
||
|
s = svdvals(A - B)
|
||
|
norm_2_est = pymatrixid.estimate_spectral_norm_diff(A, B)
|
||
|
assert_(np.allclose(norm_2_est, s[0], 1e-6))
|
||
|
|
||
|
# Rank estimates
|
||
|
B = np.array([[1, 1, 0], [0, 0, 1], [0, 0, 1]], dtype=dtype)
|
||
|
for M in [A, B]:
|
||
|
ML = aslinearoperator(M)
|
||
|
|
||
|
rank_tol = 1e-9
|
||
|
rank_np = np.linalg.matrix_rank(M, norm(M, 2)*rank_tol)
|
||
|
rank_est = pymatrixid.estimate_rank(M, rank_tol)
|
||
|
rank_est_2 = pymatrixid.estimate_rank(ML, rank_tol)
|
||
|
|
||
|
assert_(rank_est >= rank_np)
|
||
|
assert_(rank_est <= rank_np + 10)
|
||
|
|
||
|
assert_(rank_est_2 >= rank_np - 4)
|
||
|
assert_(rank_est_2 <= rank_np + 4)
|
||
|
|
||
|
def test_rand(self):
|
||
|
pymatrixid.seed('default')
|
||
|
assert_(np.allclose(pymatrixid.rand(2), [0.8932059, 0.64500803], 1e-4))
|
||
|
|
||
|
pymatrixid.seed(1234)
|
||
|
x1 = pymatrixid.rand(2)
|
||
|
assert_(np.allclose(x1, [0.7513823, 0.06861718], 1e-4))
|
||
|
|
||
|
np.random.seed(1234)
|
||
|
pymatrixid.seed()
|
||
|
x2 = pymatrixid.rand(2)
|
||
|
|
||
|
np.random.seed(1234)
|
||
|
pymatrixid.seed(np.random.rand(55))
|
||
|
x3 = pymatrixid.rand(2)
|
||
|
|
||
|
assert_allclose(x1, x2)
|
||
|
assert_allclose(x1, x3)
|
||
|
|
||
|
def test_badcall(self):
|
||
|
A = hilbert(5).astype(np.float32)
|
||
|
assert_raises(ValueError, pymatrixid.interp_decomp, A, 1e-6, rand=False)
|
||
|
|
||
|
def test_rank_too_large(self):
|
||
|
# svd(array, k) should not segfault
|
||
|
a = np.ones((4, 3))
|
||
|
with assert_raises(ValueError):
|
||
|
pymatrixid.svd(a, 4)
|
||
|
|
||
|
def test_full_rank(self):
|
||
|
eps = 1.0e-12
|
||
|
|
||
|
# fixed precision
|
||
|
A = np.random.rand(16, 8)
|
||
|
k, idx, proj = pymatrixid.interp_decomp(A, eps)
|
||
|
assert_(k == A.shape[1])
|
||
|
|
||
|
P = pymatrixid.reconstruct_interp_matrix(idx, proj)
|
||
|
B = pymatrixid.reconstruct_skel_matrix(A, k, idx)
|
||
|
assert_allclose(A, B.dot(P))
|
||
|
|
||
|
# fixed rank
|
||
|
idx, proj = pymatrixid.interp_decomp(A, k)
|
||
|
|
||
|
P = pymatrixid.reconstruct_interp_matrix(idx, proj)
|
||
|
B = pymatrixid.reconstruct_skel_matrix(A, k, idx)
|
||
|
assert_allclose(A, B.dot(P))
|
||
|
|
||
|
def test_bug_9793(self):
|
||
|
dtypes = [np.float_, np.complex_]
|
||
|
rands = [True, False]
|
||
|
epss = [1, 0.1]
|
||
|
|
||
|
for dtype, eps, rand in itertools.product(dtypes, epss, rands):
|
||
|
A = np.array([[-1, -1, -1, 0, 0, 0],
|
||
|
[0, 0, 0, 1, 1, 1],
|
||
|
[1, 0, 0, 1, 0, 0],
|
||
|
[0, 1, 0, 0, 1, 0],
|
||
|
[0, 0, 1, 0, 0, 1]],
|
||
|
dtype=dtype, order="C")
|
||
|
B = A.copy()
|
||
|
interp_decomp(A.T, eps, rand=rand)
|
||
|
assert_(np.array_equal(A, B))
|