Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
410 lines
12 KiB
410 lines
12 KiB
4 years ago
|
# Authors: Travis Oliphant, Matthew Brett
|
||
|
|
||
|
"""
|
||
|
Base classes for MATLAB file stream reading.
|
||
|
|
||
|
MATLAB is a registered trademark of the Mathworks inc.
|
||
|
"""
|
||
|
import operator
|
||
|
import functools
|
||
|
|
||
|
import numpy as np
|
||
|
from scipy._lib import doccer
|
||
|
|
||
|
from . import byteordercodes as boc
|
||
|
|
||
|
|
||
|
class MatReadError(Exception):
|
||
|
pass
|
||
|
|
||
|
|
||
|
class MatWriteError(Exception):
|
||
|
pass
|
||
|
|
||
|
|
||
|
class MatReadWarning(UserWarning):
|
||
|
pass
|
||
|
|
||
|
|
||
|
doc_dict = \
|
||
|
{'file_arg':
|
||
|
'''file_name : str
|
||
|
Name of the mat file (do not need .mat extension if
|
||
|
appendmat==True) Can also pass open file-like object.''',
|
||
|
'append_arg':
|
||
|
'''appendmat : bool, optional
|
||
|
True to append the .mat extension to the end of the given
|
||
|
filename, if not already present.''',
|
||
|
'load_args':
|
||
|
'''byte_order : str or None, optional
|
||
|
None by default, implying byte order guessed from mat
|
||
|
file. Otherwise can be one of ('native', '=', 'little', '<',
|
||
|
'BIG', '>').
|
||
|
mat_dtype : bool, optional
|
||
|
If True, return arrays in same dtype as would be loaded into
|
||
|
MATLAB (instead of the dtype with which they are saved).
|
||
|
squeeze_me : bool, optional
|
||
|
Whether to squeeze unit matrix dimensions or not.
|
||
|
chars_as_strings : bool, optional
|
||
|
Whether to convert char arrays to string arrays.
|
||
|
matlab_compatible : bool, optional
|
||
|
Returns matrices as would be loaded by MATLAB (implies
|
||
|
squeeze_me=False, chars_as_strings=False, mat_dtype=True,
|
||
|
struct_as_record=True).''',
|
||
|
'struct_arg':
|
||
|
'''struct_as_record : bool, optional
|
||
|
Whether to load MATLAB structs as NumPy record arrays, or as
|
||
|
old-style NumPy arrays with dtype=object. Setting this flag to
|
||
|
False replicates the behavior of SciPy version 0.7.x (returning
|
||
|
numpy object arrays). The default setting is True, because it
|
||
|
allows easier round-trip load and save of MATLAB files.''',
|
||
|
'matstream_arg':
|
||
|
'''mat_stream : file-like
|
||
|
Object with file API, open for reading.''',
|
||
|
'long_fields':
|
||
|
'''long_field_names : bool, optional
|
||
|
* False - maximum field name length in a structure is 31 characters
|
||
|
which is the documented maximum length. This is the default.
|
||
|
* True - maximum field name length in a structure is 63 characters
|
||
|
which works for MATLAB 7.6''',
|
||
|
'do_compression':
|
||
|
'''do_compression : bool, optional
|
||
|
Whether to compress matrices on write. Default is False.''',
|
||
|
'oned_as':
|
||
|
'''oned_as : {'row', 'column'}, optional
|
||
|
If 'column', write 1-D NumPy arrays as column vectors.
|
||
|
If 'row', write 1D NumPy arrays as row vectors.''',
|
||
|
'unicode_strings':
|
||
|
'''unicode_strings : bool, optional
|
||
|
If True, write strings as Unicode, else MATLAB usual encoding.'''}
|
||
|
|
||
|
docfiller = doccer.filldoc(doc_dict)
|
||
|
|
||
|
'''
|
||
|
|
||
|
Note on architecture
|
||
|
======================
|
||
|
|
||
|
There are three sets of parameters relevant for reading files. The
|
||
|
first are *file read parameters* - containing options that are common
|
||
|
for reading the whole file, and therefore every variable within that
|
||
|
file. At the moment these are:
|
||
|
|
||
|
* mat_stream
|
||
|
* dtypes (derived from byte code)
|
||
|
* byte_order
|
||
|
* chars_as_strings
|
||
|
* squeeze_me
|
||
|
* struct_as_record (MATLAB 5 files)
|
||
|
* class_dtypes (derived from order code, MATLAB 5 files)
|
||
|
* codecs (MATLAB 5 files)
|
||
|
* uint16_codec (MATLAB 5 files)
|
||
|
|
||
|
Another set of parameters are those that apply only to the current
|
||
|
variable being read - the *header*:
|
||
|
|
||
|
* header related variables (different for v4 and v5 mat files)
|
||
|
* is_complex
|
||
|
* mclass
|
||
|
* var_stream
|
||
|
|
||
|
With the header, we need ``next_position`` to tell us where the next
|
||
|
variable in the stream is.
|
||
|
|
||
|
Then, for each element in a matrix, there can be *element read
|
||
|
parameters*. An element is, for example, one element in a MATLAB cell
|
||
|
array. At the moment, these are:
|
||
|
|
||
|
* mat_dtype
|
||
|
|
||
|
The file-reading object contains the *file read parameters*. The
|
||
|
*header* is passed around as a data object, or may be read and discarded
|
||
|
in a single function. The *element read parameters* - the mat_dtype in
|
||
|
this instance, is passed into a general post-processing function - see
|
||
|
``mio_utils`` for details.
|
||
|
'''
|
||
|
|
||
|
|
||
|
def convert_dtypes(dtype_template, order_code):
|
||
|
''' Convert dtypes in mapping to given order
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
dtype_template : mapping
|
||
|
mapping with values returning numpy dtype from ``np.dtype(val)``
|
||
|
order_code : str
|
||
|
an order code suitable for using in ``dtype.newbyteorder()``
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
dtypes : mapping
|
||
|
mapping where values have been replaced by
|
||
|
``np.dtype(val).newbyteorder(order_code)``
|
||
|
|
||
|
'''
|
||
|
dtypes = dtype_template.copy()
|
||
|
for k in dtypes:
|
||
|
dtypes[k] = np.dtype(dtypes[k]).newbyteorder(order_code)
|
||
|
return dtypes
|
||
|
|
||
|
|
||
|
def read_dtype(mat_stream, a_dtype):
|
||
|
"""
|
||
|
Generic get of byte stream data of known type
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
mat_stream : file_like object
|
||
|
MATLAB (tm) mat file stream
|
||
|
a_dtype : dtype
|
||
|
dtype of array to read. `a_dtype` is assumed to be correct
|
||
|
endianness.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
arr : ndarray
|
||
|
Array of dtype `a_dtype` read from stream.
|
||
|
|
||
|
"""
|
||
|
num_bytes = a_dtype.itemsize
|
||
|
arr = np.ndarray(shape=(),
|
||
|
dtype=a_dtype,
|
||
|
buffer=mat_stream.read(num_bytes),
|
||
|
order='F')
|
||
|
return arr
|
||
|
|
||
|
|
||
|
def get_matfile_version(fileobj):
|
||
|
"""
|
||
|
Return major, minor tuple depending on apparent mat file type
|
||
|
|
||
|
Where:
|
||
|
|
||
|
#. 0,x -> version 4 format mat files
|
||
|
#. 1,x -> version 5 format mat files
|
||
|
#. 2,x -> version 7.3 format mat files (HDF format)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
fileobj : file_like
|
||
|
object implementing seek() and read()
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
major_version : {0, 1, 2}
|
||
|
major MATLAB File format version
|
||
|
minor_version : int
|
||
|
minor MATLAB file format version
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
MatReadError
|
||
|
If the file is empty.
|
||
|
ValueError
|
||
|
The matfile version is unknown.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Has the side effect of setting the file read pointer to 0
|
||
|
"""
|
||
|
# Mat4 files have a zero somewhere in first 4 bytes
|
||
|
fileobj.seek(0)
|
||
|
mopt_bytes = fileobj.read(4)
|
||
|
if len(mopt_bytes) == 0:
|
||
|
raise MatReadError("Mat file appears to be empty")
|
||
|
mopt_ints = np.ndarray(shape=(4,), dtype=np.uint8, buffer=mopt_bytes)
|
||
|
if 0 in mopt_ints:
|
||
|
fileobj.seek(0)
|
||
|
return (0,0)
|
||
|
# For 5 format or 7.3 format we need to read an integer in the
|
||
|
# header. Bytes 124 through 128 contain a version integer and an
|
||
|
# endian test string
|
||
|
fileobj.seek(124)
|
||
|
tst_str = fileobj.read(4)
|
||
|
fileobj.seek(0)
|
||
|
maj_ind = int(tst_str[2] == b'I'[0])
|
||
|
maj_val = int(tst_str[maj_ind])
|
||
|
min_val = int(tst_str[1 - maj_ind])
|
||
|
ret = (maj_val, min_val)
|
||
|
if maj_val in (1, 2):
|
||
|
return ret
|
||
|
raise ValueError('Unknown mat file type, version %s, %s' % ret)
|
||
|
|
||
|
|
||
|
def matdims(arr, oned_as='column'):
|
||
|
"""
|
||
|
Determine equivalent MATLAB dimensions for given array
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
arr : ndarray
|
||
|
Input array
|
||
|
oned_as : {'column', 'row'}, optional
|
||
|
Whether 1-D arrays are returned as MATLAB row or column matrices.
|
||
|
Default is 'column'.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
dims : tuple
|
||
|
Shape tuple, in the form MATLAB expects it.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
We had to decide what shape a 1 dimensional array would be by
|
||
|
default. ``np.atleast_2d`` thinks it is a row vector. The
|
||
|
default for a vector in MATLAB (e.g., ``>> 1:12``) is a row vector.
|
||
|
|
||
|
Versions of scipy up to and including 0.11 resulted (accidentally)
|
||
|
in 1-D arrays being read as column vectors. For the moment, we
|
||
|
maintain the same tradition here.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> matdims(np.array(1)) # NumPy scalar
|
||
|
(1, 1)
|
||
|
>>> matdims(np.array([1])) # 1-D array, 1 element
|
||
|
(1, 1)
|
||
|
>>> matdims(np.array([1,2])) # 1-D array, 2 elements
|
||
|
(2, 1)
|
||
|
>>> matdims(np.array([[2],[3]])) # 2-D array, column vector
|
||
|
(2, 1)
|
||
|
>>> matdims(np.array([[2,3]])) # 2-D array, row vector
|
||
|
(1, 2)
|
||
|
>>> matdims(np.array([[[2,3]]])) # 3-D array, rowish vector
|
||
|
(1, 1, 2)
|
||
|
>>> matdims(np.array([])) # empty 1-D array
|
||
|
(0, 0)
|
||
|
>>> matdims(np.array([[]])) # empty 2-D array
|
||
|
(0, 0)
|
||
|
>>> matdims(np.array([[[]]])) # empty 3-D array
|
||
|
(0, 0, 0)
|
||
|
|
||
|
Optional argument flips 1-D shape behavior.
|
||
|
|
||
|
>>> matdims(np.array([1,2]), 'row') # 1-D array, 2 elements
|
||
|
(1, 2)
|
||
|
|
||
|
The argument has to make sense though
|
||
|
|
||
|
>>> matdims(np.array([1,2]), 'bizarre')
|
||
|
Traceback (most recent call last):
|
||
|
...
|
||
|
ValueError: 1-D option "bizarre" is strange
|
||
|
|
||
|
"""
|
||
|
shape = arr.shape
|
||
|
if shape == (): # scalar
|
||
|
return (1,1)
|
||
|
if functools.reduce(operator.mul, shape) == 0: # zero elememts
|
||
|
return (0,) * np.max([arr.ndim, 2])
|
||
|
if len(shape) == 1: # 1D
|
||
|
if oned_as == 'column':
|
||
|
return shape + (1,)
|
||
|
elif oned_as == 'row':
|
||
|
return (1,) + shape
|
||
|
else:
|
||
|
raise ValueError('1-D option "%s" is strange'
|
||
|
% oned_as)
|
||
|
return shape
|
||
|
|
||
|
|
||
|
class MatVarReader(object):
|
||
|
''' Abstract class defining required interface for var readers'''
|
||
|
def __init__(self, file_reader):
|
||
|
pass
|
||
|
|
||
|
def read_header(self):
|
||
|
''' Returns header '''
|
||
|
pass
|
||
|
|
||
|
def array_from_header(self, header):
|
||
|
''' Reads array given header '''
|
||
|
pass
|
||
|
|
||
|
|
||
|
class MatFileReader(object):
|
||
|
""" Base object for reading mat files
|
||
|
|
||
|
To make this class functional, you will need to override the
|
||
|
following methods:
|
||
|
|
||
|
matrix_getter_factory - gives object to fetch next matrix from stream
|
||
|
guess_byte_order - guesses file byte order from file
|
||
|
"""
|
||
|
|
||
|
@docfiller
|
||
|
def __init__(self, mat_stream,
|
||
|
byte_order=None,
|
||
|
mat_dtype=False,
|
||
|
squeeze_me=False,
|
||
|
chars_as_strings=True,
|
||
|
matlab_compatible=False,
|
||
|
struct_as_record=True,
|
||
|
verify_compressed_data_integrity=True,
|
||
|
simplify_cells=False):
|
||
|
'''
|
||
|
Initializer for mat file reader
|
||
|
|
||
|
mat_stream : file-like
|
||
|
object with file API, open for reading
|
||
|
%(load_args)s
|
||
|
'''
|
||
|
# Initialize stream
|
||
|
self.mat_stream = mat_stream
|
||
|
self.dtypes = {}
|
||
|
if not byte_order:
|
||
|
byte_order = self.guess_byte_order()
|
||
|
else:
|
||
|
byte_order = boc.to_numpy_code(byte_order)
|
||
|
self.byte_order = byte_order
|
||
|
self.struct_as_record = struct_as_record
|
||
|
if matlab_compatible:
|
||
|
self.set_matlab_compatible()
|
||
|
else:
|
||
|
self.squeeze_me = squeeze_me
|
||
|
self.chars_as_strings = chars_as_strings
|
||
|
self.mat_dtype = mat_dtype
|
||
|
self.verify_compressed_data_integrity = verify_compressed_data_integrity
|
||
|
self.simplify_cells = simplify_cells
|
||
|
if simplify_cells:
|
||
|
self.squeeze_me = True
|
||
|
self.struct_as_record = False
|
||
|
|
||
|
def set_matlab_compatible(self):
|
||
|
''' Sets options to return arrays as MATLAB loads them '''
|
||
|
self.mat_dtype = True
|
||
|
self.squeeze_me = False
|
||
|
self.chars_as_strings = False
|
||
|
|
||
|
def guess_byte_order(self):
|
||
|
''' As we do not know what file type we have, assume native '''
|
||
|
return boc.native_code
|
||
|
|
||
|
def end_of_stream(self):
|
||
|
b = self.mat_stream.read(1)
|
||
|
curpos = self.mat_stream.tell()
|
||
|
self.mat_stream.seek(curpos-1)
|
||
|
return len(b) == 0
|
||
|
|
||
|
|
||
|
def arr_dtype_number(arr, num):
|
||
|
''' Return dtype for given number of items per element'''
|
||
|
return np.dtype(arr.dtype.str[:2] + str(num))
|
||
|
|
||
|
|
||
|
def arr_to_chars(arr):
|
||
|
''' Convert string array to char array '''
|
||
|
dims = list(arr.shape)
|
||
|
if not dims:
|
||
|
dims = [1]
|
||
|
dims.append(int(arr.dtype.str[2:]))
|
||
|
arr = np.ndarray(shape=dims,
|
||
|
dtype=arr_dtype_number(arr, 1),
|
||
|
buffer=arr)
|
||
|
empties = [arr == '']
|
||
|
if not np.any(empties):
|
||
|
return arr
|
||
|
arr = arr.copy()
|
||
|
arr[tuple(empties)] = ' '
|
||
|
return arr
|