1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/venv/lib/python3.9/site-packages/scipy/fft/tests/test_numpy.py

326 lines
12 KiB

import queue
import threading
import multiprocessing
import numpy as np
import pytest
from numpy.random import random
from numpy.testing import (
assert_array_almost_equal, assert_array_equal, assert_allclose
)
from pytest import raises as assert_raises
import scipy.fft as fft
def fft1(x):
L = len(x)
phase = -2j*np.pi*(np.arange(L)/float(L))
phase = np.arange(L).reshape(-1, 1) * phase
return np.sum(x*np.exp(phase), axis=1)
class TestFFTShift(object):
def test_fft_n(self):
assert_raises(ValueError, fft.fft, [1, 2, 3], 0)
class TestFFT1D(object):
def test_identity(self):
maxlen = 512
x = random(maxlen) + 1j*random(maxlen)
xr = random(maxlen)
for i in range(1,maxlen):
assert_array_almost_equal(fft.ifft(fft.fft(x[0:i])), x[0:i],
decimal=12)
assert_array_almost_equal(fft.irfft(fft.rfft(xr[0:i]),i),
xr[0:i], decimal=12)
def test_fft(self):
x = random(30) + 1j*random(30)
assert_array_almost_equal(fft1(x), fft.fft(x))
assert_array_almost_equal(fft1(x) / np.sqrt(30),
fft.fft(x, norm="ortho"))
def test_ifft(self):
x = random(30) + 1j*random(30)
assert_array_almost_equal(x, fft.ifft(fft.fft(x)))
assert_array_almost_equal(
x, fft.ifft(fft.fft(x, norm="ortho"), norm="ortho"))
def test_fft2(self):
x = random((30, 20)) + 1j*random((30, 20))
assert_array_almost_equal(fft.fft(fft.fft(x, axis=1), axis=0),
fft.fft2(x))
assert_array_almost_equal(fft.fft2(x) / np.sqrt(30 * 20),
fft.fft2(x, norm="ortho"))
def test_ifft2(self):
x = random((30, 20)) + 1j*random((30, 20))
assert_array_almost_equal(fft.ifft(fft.ifft(x, axis=1), axis=0),
fft.ifft2(x))
assert_array_almost_equal(fft.ifft2(x) * np.sqrt(30 * 20),
fft.ifft2(x, norm="ortho"))
def test_fftn(self):
x = random((30, 20, 10)) + 1j*random((30, 20, 10))
assert_array_almost_equal(
fft.fft(fft.fft(fft.fft(x, axis=2), axis=1), axis=0),
fft.fftn(x))
assert_array_almost_equal(fft.fftn(x) / np.sqrt(30 * 20 * 10),
fft.fftn(x, norm="ortho"))
def test_ifftn(self):
x = random((30, 20, 10)) + 1j*random((30, 20, 10))
assert_array_almost_equal(
fft.ifft(fft.ifft(fft.ifft(x, axis=2), axis=1), axis=0),
fft.ifftn(x))
assert_array_almost_equal(fft.ifftn(x) * np.sqrt(30 * 20 * 10),
fft.ifftn(x, norm="ortho"))
def test_rfft(self):
x = random(30)
for n in [x.size, 2*x.size]:
for norm in [None, 'ortho']:
assert_array_almost_equal(
fft.fft(x, n=n, norm=norm)[:(n//2 + 1)],
fft.rfft(x, n=n, norm=norm))
assert_array_almost_equal(fft.rfft(x, n=n) / np.sqrt(n),
fft.rfft(x, n=n, norm="ortho"))
def test_irfft(self):
x = random(30)
assert_array_almost_equal(x, fft.irfft(fft.rfft(x)))
assert_array_almost_equal(
x, fft.irfft(fft.rfft(x, norm="ortho"), norm="ortho"))
def test_rfft2(self):
x = random((30, 20))
assert_array_almost_equal(fft.fft2(x)[:, :11], fft.rfft2(x))
assert_array_almost_equal(fft.rfft2(x) / np.sqrt(30 * 20),
fft.rfft2(x, norm="ortho"))
def test_irfft2(self):
x = random((30, 20))
assert_array_almost_equal(x, fft.irfft2(fft.rfft2(x)))
assert_array_almost_equal(
x, fft.irfft2(fft.rfft2(x, norm="ortho"), norm="ortho"))
def test_rfftn(self):
x = random((30, 20, 10))
assert_array_almost_equal(fft.fftn(x)[:, :, :6], fft.rfftn(x))
assert_array_almost_equal(fft.rfftn(x) / np.sqrt(30 * 20 * 10),
fft.rfftn(x, norm="ortho"))
def test_irfftn(self):
x = random((30, 20, 10))
assert_array_almost_equal(x, fft.irfftn(fft.rfftn(x)))
assert_array_almost_equal(
x, fft.irfftn(fft.rfftn(x, norm="ortho"), norm="ortho"))
def test_hfft(self):
x = random(14) + 1j*random(14)
x_herm = np.concatenate((random(1), x, random(1)))
x = np.concatenate((x_herm, x[::-1].conj()))
assert_array_almost_equal(fft.fft(x), fft.hfft(x_herm))
assert_array_almost_equal(fft.hfft(x_herm) / np.sqrt(30),
fft.hfft(x_herm, norm="ortho"))
def test_ihfft(self):
x = random(14) + 1j*random(14)
x_herm = np.concatenate((random(1), x, random(1)))
x = np.concatenate((x_herm, x[::-1].conj()))
assert_array_almost_equal(x_herm, fft.ihfft(fft.hfft(x_herm)))
assert_array_almost_equal(
x_herm, fft.ihfft(fft.hfft(x_herm, norm="ortho"),
norm="ortho"))
def test_hfft2(self):
x = random((30, 20))
assert_array_almost_equal(x, fft.hfft2(fft.ihfft2(x)))
assert_array_almost_equal(
x, fft.hfft2(fft.ihfft2(x, norm="ortho"), norm="ortho"))
def test_ihfft2(self):
x = random((30, 20))
assert_array_almost_equal(fft.ifft2(x)[:, :11], fft.ihfft2(x))
assert_array_almost_equal(fft.ihfft2(x) * np.sqrt(30 * 20),
fft.ihfft2(x, norm="ortho"))
def test_hfftn(self):
x = random((30, 20, 10))
assert_array_almost_equal(x, fft.hfftn(fft.ihfftn(x)))
assert_array_almost_equal(
x, fft.hfftn(fft.ihfftn(x, norm="ortho"), norm="ortho"))
def test_ihfftn(self):
x = random((30, 20, 10))
assert_array_almost_equal(fft.ifftn(x)[:, :, :6], fft.ihfftn(x))
assert_array_almost_equal(fft.ihfftn(x) * np.sqrt(30 * 20 * 10),
fft.ihfftn(x, norm="ortho"))
@pytest.mark.parametrize("op", [fft.fftn, fft.ifftn,
fft.rfftn, fft.irfftn,
fft.hfftn, fft.ihfftn])
def test_axes(self, op):
x = random((30, 20, 10))
axes = [(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)]
for a in axes:
op_tr = op(np.transpose(x, a))
tr_op = np.transpose(op(x, axes=a), a)
assert_array_almost_equal(op_tr, tr_op)
@pytest.mark.parametrize("op", [fft.fft2, fft.ifft2,
fft.rfft2, fft.irfft2,
fft.hfft2, fft.ihfft2,
fft.fftn, fft.ifftn,
fft.rfftn, fft.irfftn,
fft.hfftn, fft.ihfftn])
def test_axes_subset_with_shape(self, op):
x = random((16, 8, 4))
axes = [(0, 1, 2), (0, 2, 1), (1, 2, 0)]
for a in axes:
# different shape on the first two axes
shape = tuple([2*x.shape[ax] if ax in a[:2] else x.shape[ax]
for ax in range(x.ndim)])
# transform only the first two axes
op_tr = op(np.transpose(x, a), s=shape[:2], axes=(0, 1))
tr_op = np.transpose(op(x, s=shape[:2], axes=a[:2]), a)
assert_array_almost_equal(op_tr, tr_op)
def test_all_1d_norm_preserving(self):
# verify that round-trip transforms are norm-preserving
x = random(30)
x_norm = np.linalg.norm(x)
n = x.size * 2
func_pairs = [(fft.fft, fft.ifft),
(fft.rfft, fft.irfft),
# hfft: order so the first function takes x.size samples
# (necessary for comparison to x_norm above)
(fft.ihfft, fft.hfft),
]
for forw, back in func_pairs:
for n in [x.size, 2*x.size]:
for norm in [None, 'ortho']:
tmp = forw(x, n=n, norm=norm)
tmp = back(tmp, n=n, norm=norm)
assert_array_almost_equal(x_norm,
np.linalg.norm(tmp))
@pytest.mark.parametrize("dtype", [np.half, np.single, np.double,
np.longdouble])
def test_dtypes(self, dtype):
# make sure that all input precisions are accepted
x = random(30).astype(dtype)
assert_array_almost_equal(fft.ifft(fft.fft(x)), x)
assert_array_almost_equal(fft.irfft(fft.rfft(x)), x)
assert_array_almost_equal(fft.hfft(fft.ihfft(x), len(x)), x)
@pytest.mark.parametrize(
"dtype",
[np.float32, np.float64, np.longfloat,
np.complex64, np.complex128, np.longcomplex])
@pytest.mark.parametrize("order", ["F", 'non-contiguous'])
@pytest.mark.parametrize(
"fft",
[fft.fft, fft.fft2, fft.fftn,
fft.ifft, fft.ifft2, fft.ifftn])
def test_fft_with_order(dtype, order, fft):
# Check that FFT/IFFT produces identical results for C, Fortran and
# non contiguous arrays
rng = np.random.RandomState(42)
X = rng.rand(8, 7, 13).astype(dtype, copy=False)
if order == 'F':
Y = np.asfortranarray(X)
else:
# Make a non contiguous array
Y = X[::-1]
X = np.ascontiguousarray(X[::-1])
if fft.__name__.endswith('fft'):
for axis in range(3):
X_res = fft(X, axis=axis)
Y_res = fft(Y, axis=axis)
assert_array_almost_equal(X_res, Y_res)
elif fft.__name__.endswith(('fft2', 'fftn')):
axes = [(0, 1), (1, 2), (0, 2)]
if fft.__name__.endswith('fftn'):
axes.extend([(0,), (1,), (2,), None])
for ax in axes:
X_res = fft(X, axes=ax)
Y_res = fft(Y, axes=ax)
assert_array_almost_equal(X_res, Y_res)
else:
raise ValueError
class TestFFTThreadSafe(object):
threads = 16
input_shape = (800, 200)
def _test_mtsame(self, func, *args):
def worker(args, q):
q.put(func(*args))
q = queue.Queue()
expected = func(*args)
# Spin off a bunch of threads to call the same function simultaneously
t = [threading.Thread(target=worker, args=(args, q))
for i in range(self.threads)]
[x.start() for x in t]
[x.join() for x in t]
# Make sure all threads returned the correct value
for i in range(self.threads):
assert_array_equal(q.get(timeout=5), expected,
'Function returned wrong value in multithreaded context')
def test_fft(self):
a = np.ones(self.input_shape, dtype=np.complex128)
self._test_mtsame(fft.fft, a)
def test_ifft(self):
a = np.full(self.input_shape, 1+0j)
self._test_mtsame(fft.ifft, a)
def test_rfft(self):
a = np.ones(self.input_shape)
self._test_mtsame(fft.rfft, a)
def test_irfft(self):
a = np.full(self.input_shape, 1+0j)
self._test_mtsame(fft.irfft, a)
def test_hfft(self):
a = np.ones(self.input_shape, np.complex64)
self._test_mtsame(fft.hfft, a)
def test_ihfft(self):
a = np.ones(self.input_shape)
self._test_mtsame(fft.ihfft, a)
@pytest.mark.parametrize("func", [fft.fft, fft.ifft, fft.rfft, fft.irfft])
def test_multiprocess(func):
# Test that fft still works after fork (gh-10422)
with multiprocessing.Pool(2) as p:
res = p.map(func, [np.ones(100) for _ in range(4)])
expect = func(np.ones(100))
for x in res:
assert_allclose(x, expect)
class TestIRFFTN(object):
def test_not_last_axis_success(self):
ar, ai = np.random.random((2, 16, 8, 32))
a = ar + 1j*ai
axes = (-2,)
# Should not raise error
fft.irfftn(a, axes=axes)