1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/venv/lib/python3.9/site-packages/pandas/tests/window/test_pairwise.py

217 lines
8.2 KiB

import warnings
import numpy as np
import pytest
from pandas import DataFrame, MultiIndex, Series, date_range
import pandas._testing as tm
from pandas.core.algorithms import safe_sort
class TestPairwise:
# GH 7738
df1s = [
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[0, 1]),
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[1, 0]),
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[1, 1]),
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=["C", "C"]),
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[1.0, 0]),
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=[0.0, 1]),
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1]], columns=["C", 1]),
DataFrame([[2.0, 4.0], [1.0, 2.0], [5.0, 2.0], [8.0, 1.0]], columns=[1, 0.0]),
DataFrame([[2, 4.0], [1, 2.0], [5, 2.0], [8, 1.0]], columns=[0, 1.0]),
DataFrame([[2, 4], [1, 2], [5, 2], [8, 1.0]], columns=[1.0, "X"]),
]
df2 = DataFrame(
[[None, 1, 1], [None, 1, 2], [None, 3, 2], [None, 8, 1]],
columns=["Y", "Z", "X"],
)
s = Series([1, 1, 3, 8])
def compare(self, result, expected):
# since we have sorted the results
# we can only compare non-nans
result = result.dropna().values
expected = expected.dropna().values
tm.assert_numpy_array_equal(result, expected, check_dtype=False)
@pytest.mark.parametrize("f", [lambda x: x.cov(), lambda x: x.corr()])
def test_no_flex(self, f):
# DataFrame methods (which do not call _flex_binary_moment())
results = [f(df) for df in self.df1s]
for (df, result) in zip(self.df1s, results):
tm.assert_index_equal(result.index, df.columns)
tm.assert_index_equal(result.columns, df.columns)
for i, result in enumerate(results):
if i > 0:
self.compare(result, results[0])
@pytest.mark.parametrize(
"f",
[
lambda x: x.expanding().cov(pairwise=True),
lambda x: x.expanding().corr(pairwise=True),
lambda x: x.rolling(window=3).cov(pairwise=True),
lambda x: x.rolling(window=3).corr(pairwise=True),
lambda x: x.ewm(com=3).cov(pairwise=True),
lambda x: x.ewm(com=3).corr(pairwise=True),
],
)
def test_pairwise_with_self(self, f):
# DataFrame with itself, pairwise=True
# note that we may construct the 1st level of the MI
# in a non-monotonic way, so compare accordingly
results = []
for i, df in enumerate(self.df1s):
result = f(df)
tm.assert_index_equal(result.index.levels[0], df.index, check_names=False)
tm.assert_numpy_array_equal(
safe_sort(result.index.levels[1]), safe_sort(df.columns.unique())
)
tm.assert_index_equal(result.columns, df.columns)
results.append(df)
for i, result in enumerate(results):
if i > 0:
self.compare(result, results[0])
@pytest.mark.parametrize(
"f",
[
lambda x: x.expanding().cov(pairwise=False),
lambda x: x.expanding().corr(pairwise=False),
lambda x: x.rolling(window=3).cov(pairwise=False),
lambda x: x.rolling(window=3).corr(pairwise=False),
lambda x: x.ewm(com=3).cov(pairwise=False),
lambda x: x.ewm(com=3).corr(pairwise=False),
],
)
def test_no_pairwise_with_self(self, f):
# DataFrame with itself, pairwise=False
results = [f(df) for df in self.df1s]
for (df, result) in zip(self.df1s, results):
tm.assert_index_equal(result.index, df.index)
tm.assert_index_equal(result.columns, df.columns)
for i, result in enumerate(results):
if i > 0:
self.compare(result, results[0])
@pytest.mark.parametrize(
"f",
[
lambda x, y: x.expanding().cov(y, pairwise=True),
lambda x, y: x.expanding().corr(y, pairwise=True),
lambda x, y: x.rolling(window=3).cov(y, pairwise=True),
lambda x, y: x.rolling(window=3).corr(y, pairwise=True),
lambda x, y: x.ewm(com=3).cov(y, pairwise=True),
lambda x, y: x.ewm(com=3).corr(y, pairwise=True),
],
)
def test_pairwise_with_other(self, f):
# DataFrame with another DataFrame, pairwise=True
results = [f(df, self.df2) for df in self.df1s]
for (df, result) in zip(self.df1s, results):
tm.assert_index_equal(result.index.levels[0], df.index, check_names=False)
tm.assert_numpy_array_equal(
safe_sort(result.index.levels[1]), safe_sort(self.df2.columns.unique())
)
for i, result in enumerate(results):
if i > 0:
self.compare(result, results[0])
@pytest.mark.parametrize(
"f",
[
lambda x, y: x.expanding().cov(y, pairwise=False),
lambda x, y: x.expanding().corr(y, pairwise=False),
lambda x, y: x.rolling(window=3).cov(y, pairwise=False),
lambda x, y: x.rolling(window=3).corr(y, pairwise=False),
lambda x, y: x.ewm(com=3).cov(y, pairwise=False),
lambda x, y: x.ewm(com=3).corr(y, pairwise=False),
],
)
def test_no_pairwise_with_other(self, f):
# DataFrame with another DataFrame, pairwise=False
results = [
f(df, self.df2) if df.columns.is_unique else None for df in self.df1s
]
for (df, result) in zip(self.df1s, results):
if result is not None:
with warnings.catch_warnings(record=True):
warnings.simplefilter("ignore", RuntimeWarning)
# we can have int and str columns
expected_index = df.index.union(self.df2.index)
expected_columns = df.columns.union(self.df2.columns)
tm.assert_index_equal(result.index, expected_index)
tm.assert_index_equal(result.columns, expected_columns)
else:
with pytest.raises(ValueError, match="'arg1' columns are not unique"):
f(df, self.df2)
with pytest.raises(ValueError, match="'arg2' columns are not unique"):
f(self.df2, df)
@pytest.mark.parametrize(
"f",
[
lambda x, y: x.expanding().cov(y),
lambda x, y: x.expanding().corr(y),
lambda x, y: x.rolling(window=3).cov(y),
lambda x, y: x.rolling(window=3).corr(y),
lambda x, y: x.ewm(com=3).cov(y),
lambda x, y: x.ewm(com=3).corr(y),
],
)
def test_pairwise_with_series(self, f):
# DataFrame with a Series
results = [f(df, self.s) for df in self.df1s] + [
f(self.s, df) for df in self.df1s
]
for (df, result) in zip(self.df1s, results):
tm.assert_index_equal(result.index, df.index)
tm.assert_index_equal(result.columns, df.columns)
for i, result in enumerate(results):
if i > 0:
self.compare(result, results[0])
def test_corr_freq_memory_error(self):
# GH 31789
s = Series(range(5), index=date_range("2020", periods=5))
result = s.rolling("12H").corr(s)
expected = Series([np.nan] * 5, index=date_range("2020", periods=5))
tm.assert_series_equal(result, expected)
def test_cov_mulittindex(self):
# GH 34440
columns = MultiIndex.from_product([list("ab"), list("xy"), list("AB")])
index = range(3)
df = DataFrame(np.arange(24).reshape(3, 8), index=index, columns=columns,)
result = df.ewm(alpha=0.1).cov()
index = MultiIndex.from_product([range(3), list("ab"), list("xy"), list("AB")])
columns = MultiIndex.from_product([list("ab"), list("xy"), list("AB")])
expected = DataFrame(
np.vstack(
(
np.full((8, 8), np.NaN),
np.full((8, 8), 32.000000),
np.full((8, 8), 63.881919),
)
),
index=index,
columns=columns,
)
tm.assert_frame_equal(result, expected)