Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
37 lines
960 B
37 lines
960 B
4 years ago
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
from pandas._libs.tslibs.timedeltas import delta_to_nanoseconds
|
||
|
|
||
|
from pandas import Timedelta, offsets
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"obj,expected",
|
||
|
[
|
||
|
(np.timedelta64(14, "D"), 14 * 24 * 3600 * 1e9),
|
||
|
(Timedelta(minutes=-7), -7 * 60 * 1e9),
|
||
|
(Timedelta(minutes=-7).to_pytimedelta(), -7 * 60 * 1e9),
|
||
|
(offsets.Nano(125), 125),
|
||
|
(1, 1),
|
||
|
(np.int64(2), 2),
|
||
|
(np.int32(3), 3),
|
||
|
],
|
||
|
)
|
||
|
def test_delta_to_nanoseconds(obj, expected):
|
||
|
result = delta_to_nanoseconds(obj)
|
||
|
assert result == expected
|
||
|
|
||
|
|
||
|
def test_delta_to_nanoseconds_error():
|
||
|
obj = np.array([123456789], dtype="m8[ns]")
|
||
|
|
||
|
with pytest.raises(TypeError, match="<class 'numpy.ndarray'>"):
|
||
|
delta_to_nanoseconds(obj)
|
||
|
|
||
|
|
||
|
def test_huge_nanoseconds_overflow():
|
||
|
# GH 32402
|
||
|
assert delta_to_nanoseconds(Timedelta(1e10)) == 1e10
|
||
|
assert delta_to_nanoseconds(Timedelta(nanoseconds=1e10)) == 1e10
|