Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
3644 lines
131 KiB
3644 lines
131 KiB
4 years ago
|
from datetime import datetime, timedelta
|
||
|
import re
|
||
|
|
||
|
import numpy as np
|
||
|
from numpy.random import randint
|
||
|
import pytest
|
||
|
|
||
|
from pandas._libs import lib
|
||
|
|
||
|
import pandas as pd
|
||
|
from pandas import DataFrame, Index, MultiIndex, Series, concat, isna, notna
|
||
|
import pandas._testing as tm
|
||
|
import pandas.core.strings as strings
|
||
|
|
||
|
|
||
|
def assert_series_or_index_equal(left, right):
|
||
|
if isinstance(left, Series):
|
||
|
tm.assert_series_equal(left, right)
|
||
|
else: # Index
|
||
|
tm.assert_index_equal(left, right)
|
||
|
|
||
|
|
||
|
_any_string_method = [
|
||
|
("cat", (), {"sep": ","}),
|
||
|
("cat", (Series(list("zyx")),), {"sep": ",", "join": "left"}),
|
||
|
("center", (10,), {}),
|
||
|
("contains", ("a",), {}),
|
||
|
("count", ("a",), {}),
|
||
|
("decode", ("UTF-8",), {}),
|
||
|
("encode", ("UTF-8",), {}),
|
||
|
("endswith", ("a",), {}),
|
||
|
("endswith", ("a",), {"na": True}),
|
||
|
("endswith", ("a",), {"na": False}),
|
||
|
("extract", ("([a-z]*)",), {"expand": False}),
|
||
|
("extract", ("([a-z]*)",), {"expand": True}),
|
||
|
("extractall", ("([a-z]*)",), {}),
|
||
|
("find", ("a",), {}),
|
||
|
("findall", ("a",), {}),
|
||
|
("get", (0,), {}),
|
||
|
# because "index" (and "rindex") fail intentionally
|
||
|
# if the string is not found, search only for empty string
|
||
|
("index", ("",), {}),
|
||
|
("join", (",",), {}),
|
||
|
("ljust", (10,), {}),
|
||
|
("match", ("a",), {}),
|
||
|
("fullmatch", ("a",), {}),
|
||
|
("normalize", ("NFC",), {}),
|
||
|
("pad", (10,), {}),
|
||
|
("partition", (" ",), {"expand": False}),
|
||
|
("partition", (" ",), {"expand": True}),
|
||
|
("repeat", (3,), {}),
|
||
|
("replace", ("a", "z"), {}),
|
||
|
("rfind", ("a",), {}),
|
||
|
("rindex", ("",), {}),
|
||
|
("rjust", (10,), {}),
|
||
|
("rpartition", (" ",), {"expand": False}),
|
||
|
("rpartition", (" ",), {"expand": True}),
|
||
|
("slice", (0, 1), {}),
|
||
|
("slice_replace", (0, 1, "z"), {}),
|
||
|
("split", (" ",), {"expand": False}),
|
||
|
("split", (" ",), {"expand": True}),
|
||
|
("startswith", ("a",), {}),
|
||
|
("startswith", ("a",), {"na": True}),
|
||
|
("startswith", ("a",), {"na": False}),
|
||
|
# translating unicode points of "a" to "d"
|
||
|
("translate", ({97: 100},), {}),
|
||
|
("wrap", (2,), {}),
|
||
|
("zfill", (10,), {}),
|
||
|
] + list(
|
||
|
zip(
|
||
|
[
|
||
|
# methods without positional arguments: zip with empty tuple and empty dict
|
||
|
"capitalize",
|
||
|
"cat",
|
||
|
"get_dummies",
|
||
|
"isalnum",
|
||
|
"isalpha",
|
||
|
"isdecimal",
|
||
|
"isdigit",
|
||
|
"islower",
|
||
|
"isnumeric",
|
||
|
"isspace",
|
||
|
"istitle",
|
||
|
"isupper",
|
||
|
"len",
|
||
|
"lower",
|
||
|
"lstrip",
|
||
|
"partition",
|
||
|
"rpartition",
|
||
|
"rsplit",
|
||
|
"rstrip",
|
||
|
"slice",
|
||
|
"slice_replace",
|
||
|
"split",
|
||
|
"strip",
|
||
|
"swapcase",
|
||
|
"title",
|
||
|
"upper",
|
||
|
"casefold",
|
||
|
],
|
||
|
[()] * 100,
|
||
|
[{}] * 100,
|
||
|
)
|
||
|
)
|
||
|
ids, _, _ = zip(*_any_string_method) # use method name as fixture-id
|
||
|
|
||
|
|
||
|
# test that the above list captures all methods of StringMethods
|
||
|
missing_methods = {
|
||
|
f for f in dir(strings.StringMethods) if not f.startswith("_")
|
||
|
} - set(ids)
|
||
|
assert not missing_methods
|
||
|
|
||
|
|
||
|
@pytest.fixture(params=_any_string_method, ids=ids)
|
||
|
def any_string_method(request):
|
||
|
"""
|
||
|
Fixture for all public methods of `StringMethods`
|
||
|
|
||
|
This fixture returns a tuple of the method name and sample arguments
|
||
|
necessary to call the method.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
method_name : str
|
||
|
The name of the method in `StringMethods`
|
||
|
args : tuple
|
||
|
Sample values for the positional arguments
|
||
|
kwargs : dict
|
||
|
Sample values for the keyword arguments
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> def test_something(any_string_method):
|
||
|
... s = pd.Series(['a', 'b', np.nan, 'd'])
|
||
|
...
|
||
|
... method_name, args, kwargs = any_string_method
|
||
|
... method = getattr(s.str, method_name)
|
||
|
... # will not raise
|
||
|
... method(*args, **kwargs)
|
||
|
"""
|
||
|
return request.param
|
||
|
|
||
|
|
||
|
# subset of the full set from pandas/conftest.py
|
||
|
_any_allowed_skipna_inferred_dtype = [
|
||
|
("string", ["a", np.nan, "c"]),
|
||
|
("bytes", [b"a", np.nan, b"c"]),
|
||
|
("empty", [np.nan, np.nan, np.nan]),
|
||
|
("empty", []),
|
||
|
("mixed-integer", ["a", np.nan, 2]),
|
||
|
]
|
||
|
ids, _ = zip(*_any_allowed_skipna_inferred_dtype) # use inferred type as id
|
||
|
|
||
|
|
||
|
@pytest.fixture(params=_any_allowed_skipna_inferred_dtype, ids=ids)
|
||
|
def any_allowed_skipna_inferred_dtype(request):
|
||
|
"""
|
||
|
Fixture for all (inferred) dtypes allowed in StringMethods.__init__
|
||
|
|
||
|
The covered (inferred) types are:
|
||
|
* 'string'
|
||
|
* 'empty'
|
||
|
* 'bytes'
|
||
|
* 'mixed'
|
||
|
* 'mixed-integer'
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
inferred_dtype : str
|
||
|
The string for the inferred dtype from _libs.lib.infer_dtype
|
||
|
values : np.ndarray
|
||
|
An array of object dtype that will be inferred to have
|
||
|
`inferred_dtype`
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import pandas._libs.lib as lib
|
||
|
>>>
|
||
|
>>> def test_something(any_allowed_skipna_inferred_dtype):
|
||
|
... inferred_dtype, values = any_allowed_skipna_inferred_dtype
|
||
|
... # will pass
|
||
|
... assert lib.infer_dtype(values, skipna=True) == inferred_dtype
|
||
|
...
|
||
|
... # constructor for .str-accessor will also pass
|
||
|
... pd.Series(values).str
|
||
|
"""
|
||
|
inferred_dtype, values = request.param
|
||
|
values = np.array(values, dtype=object) # object dtype to avoid casting
|
||
|
|
||
|
# correctness of inference tested in tests/dtypes/test_inference.py
|
||
|
return inferred_dtype, values
|
||
|
|
||
|
|
||
|
class TestStringMethods:
|
||
|
def test_api(self):
|
||
|
|
||
|
# GH 6106, GH 9322
|
||
|
assert Series.str is strings.StringMethods
|
||
|
assert isinstance(Series([""]).str, strings.StringMethods)
|
||
|
|
||
|
def test_api_mi_raises(self):
|
||
|
# GH 23679
|
||
|
mi = MultiIndex.from_arrays([["a", "b", "c"]])
|
||
|
msg = "Can only use .str accessor with Index, not MultiIndex"
|
||
|
with pytest.raises(AttributeError, match=msg):
|
||
|
mi.str
|
||
|
assert not hasattr(mi, "str")
|
||
|
|
||
|
@pytest.mark.parametrize("dtype", [object, "category"])
|
||
|
def test_api_per_dtype(self, index_or_series, dtype, any_skipna_inferred_dtype):
|
||
|
# one instance of parametrized fixture
|
||
|
box = index_or_series
|
||
|
inferred_dtype, values = any_skipna_inferred_dtype
|
||
|
|
||
|
t = box(values, dtype=dtype) # explicit dtype to avoid casting
|
||
|
|
||
|
types_passing_constructor = [
|
||
|
"string",
|
||
|
"unicode",
|
||
|
"empty",
|
||
|
"bytes",
|
||
|
"mixed",
|
||
|
"mixed-integer",
|
||
|
]
|
||
|
if inferred_dtype in types_passing_constructor:
|
||
|
# GH 6106
|
||
|
assert isinstance(t.str, strings.StringMethods)
|
||
|
else:
|
||
|
# GH 9184, GH 23011, GH 23163
|
||
|
msg = "Can only use .str accessor with string values.*"
|
||
|
with pytest.raises(AttributeError, match=msg):
|
||
|
t.str
|
||
|
assert not hasattr(t, "str")
|
||
|
|
||
|
@pytest.mark.parametrize("dtype", [object, "category"])
|
||
|
def test_api_per_method(
|
||
|
self,
|
||
|
index_or_series,
|
||
|
dtype,
|
||
|
any_allowed_skipna_inferred_dtype,
|
||
|
any_string_method,
|
||
|
request,
|
||
|
):
|
||
|
# this test does not check correctness of the different methods,
|
||
|
# just that the methods work on the specified (inferred) dtypes,
|
||
|
# and raise on all others
|
||
|
box = index_or_series
|
||
|
|
||
|
# one instance of each parametrized fixture
|
||
|
inferred_dtype, values = any_allowed_skipna_inferred_dtype
|
||
|
method_name, args, kwargs = any_string_method
|
||
|
|
||
|
# TODO: get rid of these xfails
|
||
|
reason = None
|
||
|
if box is Index and values.size == 0:
|
||
|
if method_name in ["partition", "rpartition"] and kwargs.get(
|
||
|
"expand", True
|
||
|
):
|
||
|
reason = "Method cannot deal with empty Index"
|
||
|
elif method_name == "split" and kwargs.get("expand", None):
|
||
|
reason = "Split fails on empty Series when expand=True"
|
||
|
elif method_name == "get_dummies":
|
||
|
reason = "Need to fortify get_dummies corner cases"
|
||
|
|
||
|
elif box is Index and inferred_dtype == "empty" and dtype == object:
|
||
|
if method_name == "get_dummies":
|
||
|
reason = "Need to fortify get_dummies corner cases"
|
||
|
|
||
|
if reason is not None:
|
||
|
mark = pytest.mark.xfail(reason=reason)
|
||
|
request.node.add_marker(mark)
|
||
|
|
||
|
t = box(values, dtype=dtype) # explicit dtype to avoid casting
|
||
|
method = getattr(t.str, method_name)
|
||
|
|
||
|
bytes_allowed = method_name in ["decode", "get", "len", "slice"]
|
||
|
# as of v0.23.4, all methods except 'cat' are very lenient with the
|
||
|
# allowed data types, just returning NaN for entries that error.
|
||
|
# This could be changed with an 'errors'-kwarg to the `str`-accessor,
|
||
|
# see discussion in GH 13877
|
||
|
mixed_allowed = method_name not in ["cat"]
|
||
|
|
||
|
allowed_types = (
|
||
|
["string", "unicode", "empty"]
|
||
|
+ ["bytes"] * bytes_allowed
|
||
|
+ ["mixed", "mixed-integer"] * mixed_allowed
|
||
|
)
|
||
|
|
||
|
if inferred_dtype in allowed_types:
|
||
|
# xref GH 23555, GH 23556
|
||
|
method(*args, **kwargs) # works!
|
||
|
else:
|
||
|
# GH 23011, GH 23163
|
||
|
msg = (
|
||
|
f"Cannot use .str.{method_name} with values of "
|
||
|
f"inferred dtype {repr(inferred_dtype)}."
|
||
|
)
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
method(*args, **kwargs)
|
||
|
|
||
|
def test_api_for_categorical(self, any_string_method):
|
||
|
# https://github.com/pandas-dev/pandas/issues/10661
|
||
|
s = Series(list("aabb"))
|
||
|
s = s + " " + s
|
||
|
c = s.astype("category")
|
||
|
assert isinstance(c.str, strings.StringMethods)
|
||
|
|
||
|
method_name, args, kwargs = any_string_method
|
||
|
|
||
|
result = getattr(c.str, method_name)(*args, **kwargs)
|
||
|
expected = getattr(s.str, method_name)(*args, **kwargs)
|
||
|
|
||
|
if isinstance(result, DataFrame):
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
elif isinstance(result, Series):
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
else:
|
||
|
# str.cat(others=None) returns string, for example
|
||
|
assert result == expected
|
||
|
|
||
|
def test_iter(self):
|
||
|
# GH3638
|
||
|
strs = "google", "wikimedia", "wikipedia", "wikitravel"
|
||
|
ds = Series(strs)
|
||
|
|
||
|
with tm.assert_produces_warning(FutureWarning):
|
||
|
for s in ds.str:
|
||
|
# iter must yield a Series
|
||
|
assert isinstance(s, Series)
|
||
|
|
||
|
# indices of each yielded Series should be equal to the index of
|
||
|
# the original Series
|
||
|
tm.assert_index_equal(s.index, ds.index)
|
||
|
|
||
|
for el in s:
|
||
|
# each element of the series is either a basestring/str or nan
|
||
|
assert isinstance(el, str) or isna(el)
|
||
|
|
||
|
# desired behavior is to iterate until everything would be nan on the
|
||
|
# next iter so make sure the last element of the iterator was 'l' in
|
||
|
# this case since 'wikitravel' is the longest string
|
||
|
assert s.dropna().values.item() == "l"
|
||
|
|
||
|
def test_iter_empty(self):
|
||
|
ds = Series([], dtype=object)
|
||
|
|
||
|
i, s = 100, 1
|
||
|
|
||
|
with tm.assert_produces_warning(FutureWarning):
|
||
|
for i, s in enumerate(ds.str):
|
||
|
pass
|
||
|
|
||
|
# nothing to iterate over so nothing defined values should remain
|
||
|
# unchanged
|
||
|
assert i == 100
|
||
|
assert s == 1
|
||
|
|
||
|
def test_iter_single_element(self):
|
||
|
ds = Series(["a"])
|
||
|
|
||
|
with tm.assert_produces_warning(FutureWarning):
|
||
|
for i, s in enumerate(ds.str):
|
||
|
pass
|
||
|
|
||
|
assert not i
|
||
|
tm.assert_series_equal(ds, s)
|
||
|
|
||
|
def test_iter_object_try_string(self):
|
||
|
ds = Series([slice(None, randint(10), randint(10, 20)) for _ in range(4)])
|
||
|
|
||
|
i, s = 100, "h"
|
||
|
|
||
|
with tm.assert_produces_warning(FutureWarning):
|
||
|
for i, s in enumerate(ds.str):
|
||
|
pass
|
||
|
|
||
|
assert i == 100
|
||
|
assert s == "h"
|
||
|
|
||
|
@pytest.mark.parametrize("other", [None, Series, Index])
|
||
|
def test_str_cat_name(self, index_or_series, other):
|
||
|
# GH 21053
|
||
|
box = index_or_series
|
||
|
values = ["a", "b"]
|
||
|
if other:
|
||
|
other = other(values)
|
||
|
else:
|
||
|
other = values
|
||
|
result = box(values, name="name").str.cat(other, sep=",")
|
||
|
assert result.name == "name"
|
||
|
|
||
|
def test_str_cat(self, index_or_series):
|
||
|
box = index_or_series
|
||
|
# test_cat above tests "str_cat" from ndarray;
|
||
|
# here testing "str.cat" from Series/Indext to ndarray/list
|
||
|
s = box(["a", "a", "b", "b", "c", np.nan])
|
||
|
|
||
|
# single array
|
||
|
result = s.str.cat()
|
||
|
expected = "aabbc"
|
||
|
assert result == expected
|
||
|
|
||
|
result = s.str.cat(na_rep="-")
|
||
|
expected = "aabbc-"
|
||
|
assert result == expected
|
||
|
|
||
|
result = s.str.cat(sep="_", na_rep="NA")
|
||
|
expected = "a_a_b_b_c_NA"
|
||
|
assert result == expected
|
||
|
|
||
|
t = np.array(["a", np.nan, "b", "d", "foo", np.nan], dtype=object)
|
||
|
expected = box(["aa", "a-", "bb", "bd", "cfoo", "--"])
|
||
|
|
||
|
# Series/Index with array
|
||
|
result = s.str.cat(t, na_rep="-")
|
||
|
assert_series_or_index_equal(result, expected)
|
||
|
|
||
|
# Series/Index with list
|
||
|
result = s.str.cat(list(t), na_rep="-")
|
||
|
assert_series_or_index_equal(result, expected)
|
||
|
|
||
|
# errors for incorrect lengths
|
||
|
rgx = r"If `others` contains arrays or lists \(or other list-likes.*"
|
||
|
z = Series(["1", "2", "3"])
|
||
|
|
||
|
with pytest.raises(ValueError, match=rgx):
|
||
|
s.str.cat(z.values)
|
||
|
|
||
|
with pytest.raises(ValueError, match=rgx):
|
||
|
s.str.cat(list(z))
|
||
|
|
||
|
def test_str_cat_raises_intuitive_error(self, index_or_series):
|
||
|
# GH 11334
|
||
|
box = index_or_series
|
||
|
s = box(["a", "b", "c", "d"])
|
||
|
message = "Did you mean to supply a `sep` keyword?"
|
||
|
with pytest.raises(ValueError, match=message):
|
||
|
s.str.cat("|")
|
||
|
with pytest.raises(ValueError, match=message):
|
||
|
s.str.cat(" ")
|
||
|
|
||
|
@pytest.mark.parametrize("sep", ["", None])
|
||
|
@pytest.mark.parametrize("dtype_target", ["object", "category"])
|
||
|
@pytest.mark.parametrize("dtype_caller", ["object", "category"])
|
||
|
def test_str_cat_categorical(
|
||
|
self, index_or_series, dtype_caller, dtype_target, sep
|
||
|
):
|
||
|
box = index_or_series
|
||
|
|
||
|
s = Index(["a", "a", "b", "a"], dtype=dtype_caller)
|
||
|
s = s if box == Index else Series(s, index=s)
|
||
|
t = Index(["b", "a", "b", "c"], dtype=dtype_target)
|
||
|
|
||
|
expected = Index(["ab", "aa", "bb", "ac"])
|
||
|
expected = expected if box == Index else Series(expected, index=s)
|
||
|
|
||
|
# Series/Index with unaligned Index -> t.values
|
||
|
result = s.str.cat(t.values, sep=sep)
|
||
|
assert_series_or_index_equal(result, expected)
|
||
|
|
||
|
# Series/Index with Series having matching Index
|
||
|
t = Series(t.values, index=s)
|
||
|
result = s.str.cat(t, sep=sep)
|
||
|
assert_series_or_index_equal(result, expected)
|
||
|
|
||
|
# Series/Index with Series.values
|
||
|
result = s.str.cat(t.values, sep=sep)
|
||
|
assert_series_or_index_equal(result, expected)
|
||
|
|
||
|
# Series/Index with Series having different Index
|
||
|
t = Series(t.values, index=t.values)
|
||
|
expected = Index(["aa", "aa", "aa", "bb", "bb"])
|
||
|
expected = (
|
||
|
expected if box == Index else Series(expected, index=expected.str[:1])
|
||
|
)
|
||
|
|
||
|
result = s.str.cat(t, sep=sep)
|
||
|
assert_series_or_index_equal(result, expected)
|
||
|
|
||
|
# test integer/float dtypes (inferred by constructor) and mixed
|
||
|
@pytest.mark.parametrize(
|
||
|
"data",
|
||
|
[[1, 2, 3], [0.1, 0.2, 0.3], [1, 2, "b"]],
|
||
|
ids=["integers", "floats", "mixed"],
|
||
|
)
|
||
|
# without dtype=object, np.array would cast [1, 2, 'b'] to ['1', '2', 'b']
|
||
|
@pytest.mark.parametrize(
|
||
|
"box",
|
||
|
[Series, Index, list, lambda x: np.array(x, dtype=object)],
|
||
|
ids=["Series", "Index", "list", "np.array"],
|
||
|
)
|
||
|
def test_str_cat_wrong_dtype_raises(self, box, data):
|
||
|
# GH 22722
|
||
|
s = Series(["a", "b", "c"])
|
||
|
t = box(data)
|
||
|
|
||
|
msg = "Concatenation requires list-likes containing only strings.*"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
# need to use outer and na_rep, as otherwise Index would not raise
|
||
|
s.str.cat(t, join="outer", na_rep="-")
|
||
|
|
||
|
def test_str_cat_mixed_inputs(self, index_or_series):
|
||
|
box = index_or_series
|
||
|
s = Index(["a", "b", "c", "d"])
|
||
|
s = s if box == Index else Series(s, index=s)
|
||
|
|
||
|
t = Series(["A", "B", "C", "D"], index=s.values)
|
||
|
d = concat([t, Series(s, index=s)], axis=1)
|
||
|
|
||
|
expected = Index(["aAa", "bBb", "cCc", "dDd"])
|
||
|
expected = expected if box == Index else Series(expected.values, index=s.values)
|
||
|
|
||
|
# Series/Index with DataFrame
|
||
|
result = s.str.cat(d)
|
||
|
assert_series_or_index_equal(result, expected)
|
||
|
|
||
|
# Series/Index with two-dimensional ndarray
|
||
|
result = s.str.cat(d.values)
|
||
|
assert_series_or_index_equal(result, expected)
|
||
|
|
||
|
# Series/Index with list of Series
|
||
|
result = s.str.cat([t, s])
|
||
|
assert_series_or_index_equal(result, expected)
|
||
|
|
||
|
# Series/Index with mixed list of Series/array
|
||
|
result = s.str.cat([t, s.values])
|
||
|
assert_series_or_index_equal(result, expected)
|
||
|
|
||
|
# Series/Index with list of Series; different indexes
|
||
|
t.index = ["b", "c", "d", "a"]
|
||
|
expected = box(["aDa", "bAb", "cBc", "dCd"])
|
||
|
expected = expected if box == Index else Series(expected.values, index=s.values)
|
||
|
result = s.str.cat([t, s])
|
||
|
assert_series_or_index_equal(result, expected)
|
||
|
|
||
|
# Series/Index with mixed list; different index
|
||
|
result = s.str.cat([t, s.values])
|
||
|
assert_series_or_index_equal(result, expected)
|
||
|
|
||
|
# Series/Index with DataFrame; different indexes
|
||
|
d.index = ["b", "c", "d", "a"]
|
||
|
expected = box(["aDd", "bAa", "cBb", "dCc"])
|
||
|
expected = expected if box == Index else Series(expected.values, index=s.values)
|
||
|
result = s.str.cat(d)
|
||
|
assert_series_or_index_equal(result, expected)
|
||
|
|
||
|
# errors for incorrect lengths
|
||
|
rgx = r"If `others` contains arrays or lists \(or other list-likes.*"
|
||
|
z = Series(["1", "2", "3"])
|
||
|
e = concat([z, z], axis=1)
|
||
|
|
||
|
# two-dimensional ndarray
|
||
|
with pytest.raises(ValueError, match=rgx):
|
||
|
s.str.cat(e.values)
|
||
|
|
||
|
# list of list-likes
|
||
|
with pytest.raises(ValueError, match=rgx):
|
||
|
s.str.cat([z.values, s.values])
|
||
|
|
||
|
# mixed list of Series/list-like
|
||
|
with pytest.raises(ValueError, match=rgx):
|
||
|
s.str.cat([z.values, s])
|
||
|
|
||
|
# errors for incorrect arguments in list-like
|
||
|
rgx = "others must be Series, Index, DataFrame,.*"
|
||
|
# make sure None/NaN do not crash checks in _get_series_list
|
||
|
u = Series(["a", np.nan, "c", None])
|
||
|
|
||
|
# mix of string and Series
|
||
|
with pytest.raises(TypeError, match=rgx):
|
||
|
s.str.cat([u, "u"])
|
||
|
|
||
|
# DataFrame in list
|
||
|
with pytest.raises(TypeError, match=rgx):
|
||
|
s.str.cat([u, d])
|
||
|
|
||
|
# 2-dim ndarray in list
|
||
|
with pytest.raises(TypeError, match=rgx):
|
||
|
s.str.cat([u, d.values])
|
||
|
|
||
|
# nested lists
|
||
|
with pytest.raises(TypeError, match=rgx):
|
||
|
s.str.cat([u, [u, d]])
|
||
|
|
||
|
# forbidden input type: set
|
||
|
# GH 23009
|
||
|
with pytest.raises(TypeError, match=rgx):
|
||
|
s.str.cat(set(u))
|
||
|
|
||
|
# forbidden input type: set in list
|
||
|
# GH 23009
|
||
|
with pytest.raises(TypeError, match=rgx):
|
||
|
s.str.cat([u, set(u)])
|
||
|
|
||
|
# other forbidden input type, e.g. int
|
||
|
with pytest.raises(TypeError, match=rgx):
|
||
|
s.str.cat(1)
|
||
|
|
||
|
# nested list-likes
|
||
|
with pytest.raises(TypeError, match=rgx):
|
||
|
s.str.cat(iter([t.values, list(s)]))
|
||
|
|
||
|
@pytest.mark.parametrize("join", ["left", "outer", "inner", "right"])
|
||
|
def test_str_cat_align_indexed(self, index_or_series, join):
|
||
|
# https://github.com/pandas-dev/pandas/issues/18657
|
||
|
box = index_or_series
|
||
|
|
||
|
s = Series(["a", "b", "c", "d"], index=["a", "b", "c", "d"])
|
||
|
t = Series(["D", "A", "E", "B"], index=["d", "a", "e", "b"])
|
||
|
sa, ta = s.align(t, join=join)
|
||
|
# result after manual alignment of inputs
|
||
|
expected = sa.str.cat(ta, na_rep="-")
|
||
|
|
||
|
if box == Index:
|
||
|
s = Index(s)
|
||
|
sa = Index(sa)
|
||
|
expected = Index(expected)
|
||
|
|
||
|
result = s.str.cat(t, join=join, na_rep="-")
|
||
|
assert_series_or_index_equal(result, expected)
|
||
|
|
||
|
@pytest.mark.parametrize("join", ["left", "outer", "inner", "right"])
|
||
|
def test_str_cat_align_mixed_inputs(self, join):
|
||
|
s = Series(["a", "b", "c", "d"])
|
||
|
t = Series(["d", "a", "e", "b"], index=[3, 0, 4, 1])
|
||
|
d = concat([t, t], axis=1)
|
||
|
|
||
|
expected_outer = Series(["aaa", "bbb", "c--", "ddd", "-ee"])
|
||
|
expected = expected_outer.loc[s.index.join(t.index, how=join)]
|
||
|
|
||
|
# list of Series
|
||
|
result = s.str.cat([t, t], join=join, na_rep="-")
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
# DataFrame
|
||
|
result = s.str.cat(d, join=join, na_rep="-")
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
# mixed list of indexed/unindexed
|
||
|
u = np.array(["A", "B", "C", "D"])
|
||
|
expected_outer = Series(["aaA", "bbB", "c-C", "ddD", "-e-"])
|
||
|
# joint index of rhs [t, u]; u will be forced have index of s
|
||
|
rhs_idx = t.index & s.index if join == "inner" else t.index | s.index
|
||
|
|
||
|
expected = expected_outer.loc[s.index.join(rhs_idx, how=join)]
|
||
|
result = s.str.cat([t, u], join=join, na_rep="-")
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
with pytest.raises(TypeError, match="others must be Series,.*"):
|
||
|
# nested lists are forbidden
|
||
|
s.str.cat([t, list(u)], join=join)
|
||
|
|
||
|
# errors for incorrect lengths
|
||
|
rgx = r"If `others` contains arrays or lists \(or other list-likes.*"
|
||
|
z = Series(["1", "2", "3"]).values
|
||
|
|
||
|
# unindexed object of wrong length
|
||
|
with pytest.raises(ValueError, match=rgx):
|
||
|
s.str.cat(z, join=join)
|
||
|
|
||
|
# unindexed object of wrong length in list
|
||
|
with pytest.raises(ValueError, match=rgx):
|
||
|
s.str.cat([t, z], join=join)
|
||
|
|
||
|
def test_str_cat_all_na(self, index_or_series, index_or_series2):
|
||
|
# GH 24044
|
||
|
box = index_or_series
|
||
|
other = index_or_series2
|
||
|
|
||
|
# check that all NaNs in caller / target work
|
||
|
s = Index(["a", "b", "c", "d"])
|
||
|
s = s if box == Index else Series(s, index=s)
|
||
|
t = other([np.nan] * 4, dtype=object)
|
||
|
# add index of s for alignment
|
||
|
t = t if other == Index else Series(t, index=s)
|
||
|
|
||
|
# all-NA target
|
||
|
if box == Series:
|
||
|
expected = Series([np.nan] * 4, index=s.index, dtype=object)
|
||
|
else: # box == Index
|
||
|
expected = Index([np.nan] * 4, dtype=object)
|
||
|
result = s.str.cat(t, join="left")
|
||
|
assert_series_or_index_equal(result, expected)
|
||
|
|
||
|
# all-NA caller (only for Series)
|
||
|
if other == Series:
|
||
|
expected = Series([np.nan] * 4, dtype=object, index=t.index)
|
||
|
result = t.str.cat(s, join="left")
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_str_cat_special_cases(self):
|
||
|
s = Series(["a", "b", "c", "d"])
|
||
|
t = Series(["d", "a", "e", "b"], index=[3, 0, 4, 1])
|
||
|
|
||
|
# iterator of elements with different types
|
||
|
expected = Series(["aaa", "bbb", "c-c", "ddd", "-e-"])
|
||
|
result = s.str.cat(iter([t, s.values]), join="outer", na_rep="-")
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
# right-align with different indexes in others
|
||
|
expected = Series(["aa-", "d-d"], index=[0, 3])
|
||
|
result = s.str.cat([t.loc[[0]], t.loc[[3]]], join="right", na_rep="-")
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_cat_on_filtered_index(self):
|
||
|
df = DataFrame(
|
||
|
index=MultiIndex.from_product(
|
||
|
[[2011, 2012], [1, 2, 3]], names=["year", "month"]
|
||
|
)
|
||
|
)
|
||
|
|
||
|
df = df.reset_index()
|
||
|
df = df[df.month > 1]
|
||
|
|
||
|
str_year = df.year.astype("str")
|
||
|
str_month = df.month.astype("str")
|
||
|
str_both = str_year.str.cat(str_month, sep=" ")
|
||
|
|
||
|
assert str_both.loc[1] == "2011 2"
|
||
|
|
||
|
str_multiple = str_year.str.cat([str_month, str_month], sep=" ")
|
||
|
|
||
|
assert str_multiple.loc[1] == "2011 2 2"
|
||
|
|
||
|
def test_count(self):
|
||
|
values = np.array(
|
||
|
["foo", "foofoo", np.nan, "foooofooofommmfoo"], dtype=np.object_
|
||
|
)
|
||
|
|
||
|
result = strings.str_count(values, "f[o]+")
|
||
|
exp = np.array([1, 2, np.nan, 4])
|
||
|
tm.assert_numpy_array_equal(result, exp)
|
||
|
|
||
|
result = Series(values).str.count("f[o]+")
|
||
|
exp = Series([1, 2, np.nan, 4])
|
||
|
assert isinstance(result, Series)
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
# mixed
|
||
|
mixed = np.array(
|
||
|
["a", np.nan, "b", True, datetime.today(), "foo", None, 1, 2.0],
|
||
|
dtype=object,
|
||
|
)
|
||
|
rs = strings.str_count(mixed, "a")
|
||
|
xp = np.array([1, np.nan, 0, np.nan, np.nan, 0, np.nan, np.nan, np.nan])
|
||
|
tm.assert_numpy_array_equal(rs, xp)
|
||
|
|
||
|
rs = Series(mixed).str.count("a")
|
||
|
xp = Series([1, np.nan, 0, np.nan, np.nan, 0, np.nan, np.nan, np.nan])
|
||
|
assert isinstance(rs, Series)
|
||
|
tm.assert_series_equal(rs, xp)
|
||
|
|
||
|
def test_contains(self):
|
||
|
values = np.array(
|
||
|
["foo", np.nan, "fooommm__foo", "mmm_", "foommm[_]+bar"], dtype=np.object_
|
||
|
)
|
||
|
pat = "mmm[_]+"
|
||
|
|
||
|
result = strings.str_contains(values, pat)
|
||
|
expected = np.array([False, np.nan, True, True, False], dtype=np.object_)
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
result = strings.str_contains(values, pat, regex=False)
|
||
|
expected = np.array([False, np.nan, False, False, True], dtype=np.object_)
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
values = np.array(["foo", "xyz", "fooommm__foo", "mmm_"], dtype=object)
|
||
|
result = strings.str_contains(values, pat)
|
||
|
expected = np.array([False, False, True, True])
|
||
|
assert result.dtype == np.bool_
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
# case insensitive using regex
|
||
|
values = np.array(["Foo", "xYz", "fOOomMm__fOo", "MMM_"], dtype=object)
|
||
|
result = strings.str_contains(values, "FOO|mmm", case=False)
|
||
|
expected = np.array([True, False, True, True])
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
# case insensitive without regex
|
||
|
result = strings.str_contains(values, "foo", regex=False, case=False)
|
||
|
expected = np.array([True, False, True, False])
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
# mixed
|
||
|
mixed = np.array(
|
||
|
["a", np.nan, "b", True, datetime.today(), "foo", None, 1, 2.0],
|
||
|
dtype=object,
|
||
|
)
|
||
|
rs = strings.str_contains(mixed, "o")
|
||
|
xp = np.array(
|
||
|
[False, np.nan, False, np.nan, np.nan, True, np.nan, np.nan, np.nan],
|
||
|
dtype=np.object_,
|
||
|
)
|
||
|
tm.assert_numpy_array_equal(rs, xp)
|
||
|
|
||
|
rs = Series(mixed).str.contains("o")
|
||
|
xp = Series(
|
||
|
[False, np.nan, False, np.nan, np.nan, True, np.nan, np.nan, np.nan]
|
||
|
)
|
||
|
assert isinstance(rs, Series)
|
||
|
tm.assert_series_equal(rs, xp)
|
||
|
|
||
|
# unicode
|
||
|
values = np.array(["foo", np.nan, "fooommm__foo", "mmm_"], dtype=np.object_)
|
||
|
pat = "mmm[_]+"
|
||
|
|
||
|
result = strings.str_contains(values, pat)
|
||
|
expected = np.array([False, np.nan, True, True], dtype=np.object_)
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
result = strings.str_contains(values, pat, na=False)
|
||
|
expected = np.array([False, False, True, True])
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
values = np.array(["foo", "xyz", "fooommm__foo", "mmm_"], dtype=np.object_)
|
||
|
result = strings.str_contains(values, pat)
|
||
|
expected = np.array([False, False, True, True])
|
||
|
assert result.dtype == np.bool_
|
||
|
tm.assert_numpy_array_equal(result, expected)
|
||
|
|
||
|
def test_contains_for_object_category(self):
|
||
|
# gh 22158
|
||
|
|
||
|
# na for category
|
||
|
values = Series(["a", "b", "c", "a", np.nan], dtype="category")
|
||
|
result = values.str.contains("a", na=True)
|
||
|
expected = Series([True, False, False, True, True])
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
result = values.str.contains("a", na=False)
|
||
|
expected = Series([True, False, False, True, False])
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
# na for objects
|
||
|
values = Series(["a", "b", "c", "a", np.nan])
|
||
|
result = values.str.contains("a", na=True)
|
||
|
expected = Series([True, False, False, True, True])
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
result = values.str.contains("a", na=False)
|
||
|
expected = Series([True, False, False, True, False])
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
@pytest.mark.parametrize("dtype", [None, "category"])
|
||
|
@pytest.mark.parametrize("null_value", [None, np.nan, pd.NA])
|
||
|
@pytest.mark.parametrize("na", [True, False])
|
||
|
def test_startswith(self, dtype, null_value, na):
|
||
|
# add category dtype parametrizations for GH-36241
|
||
|
values = Series(
|
||
|
["om", null_value, "foo_nom", "nom", "bar_foo", null_value, "foo"],
|
||
|
dtype=dtype,
|
||
|
)
|
||
|
|
||
|
result = values.str.startswith("foo")
|
||
|
exp = Series([False, np.nan, True, False, False, np.nan, True])
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
result = values.str.startswith("foo", na=na)
|
||
|
exp = Series([False, na, True, False, False, na, True])
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
# mixed
|
||
|
mixed = np.array(
|
||
|
["a", np.nan, "b", True, datetime.today(), "foo", None, 1, 2.0],
|
||
|
dtype=np.object_,
|
||
|
)
|
||
|
rs = strings.str_startswith(mixed, "f")
|
||
|
xp = np.array(
|
||
|
[False, np.nan, False, np.nan, np.nan, True, np.nan, np.nan, np.nan],
|
||
|
dtype=np.object_,
|
||
|
)
|
||
|
tm.assert_numpy_array_equal(rs, xp)
|
||
|
|
||
|
rs = Series(mixed).str.startswith("f")
|
||
|
assert isinstance(rs, Series)
|
||
|
xp = Series(
|
||
|
[False, np.nan, False, np.nan, np.nan, True, np.nan, np.nan, np.nan]
|
||
|
)
|
||
|
tm.assert_series_equal(rs, xp)
|
||
|
|
||
|
@pytest.mark.parametrize("dtype", [None, "category"])
|
||
|
@pytest.mark.parametrize("null_value", [None, np.nan, pd.NA])
|
||
|
@pytest.mark.parametrize("na", [True, False])
|
||
|
def test_endswith(self, dtype, null_value, na):
|
||
|
# add category dtype parametrizations for GH-36241
|
||
|
values = Series(
|
||
|
["om", null_value, "foo_nom", "nom", "bar_foo", null_value, "foo"],
|
||
|
dtype=dtype,
|
||
|
)
|
||
|
|
||
|
result = values.str.endswith("foo")
|
||
|
exp = Series([False, np.nan, False, False, True, np.nan, True])
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
result = values.str.endswith("foo", na=na)
|
||
|
exp = Series([False, na, False, False, True, na, True])
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
# mixed
|
||
|
mixed = np.array(
|
||
|
["a", np.nan, "b", True, datetime.today(), "foo", None, 1, 2.0],
|
||
|
dtype=object,
|
||
|
)
|
||
|
rs = strings.str_endswith(mixed, "f")
|
||
|
xp = np.array(
|
||
|
[False, np.nan, False, np.nan, np.nan, False, np.nan, np.nan, np.nan],
|
||
|
dtype=np.object_,
|
||
|
)
|
||
|
tm.assert_numpy_array_equal(rs, xp)
|
||
|
|
||
|
rs = Series(mixed).str.endswith("f")
|
||
|
xp = Series(
|
||
|
[False, np.nan, False, np.nan, np.nan, False, np.nan, np.nan, np.nan]
|
||
|
)
|
||
|
assert isinstance(rs, Series)
|
||
|
tm.assert_series_equal(rs, xp)
|
||
|
|
||
|
def test_title(self):
|
||
|
values = Series(["FOO", "BAR", np.nan, "Blah", "blurg"])
|
||
|
|
||
|
result = values.str.title()
|
||
|
exp = Series(["Foo", "Bar", np.nan, "Blah", "Blurg"])
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
# mixed
|
||
|
mixed = Series(
|
||
|
["FOO", np.nan, "bar", True, datetime.today(), "blah", None, 1, 2.0]
|
||
|
)
|
||
|
mixed = mixed.str.title()
|
||
|
exp = Series(
|
||
|
["Foo", np.nan, "Bar", np.nan, np.nan, "Blah", np.nan, np.nan, np.nan]
|
||
|
)
|
||
|
tm.assert_almost_equal(mixed, exp)
|
||
|
|
||
|
def test_lower_upper(self):
|
||
|
values = Series(["om", np.nan, "nom", "nom"])
|
||
|
|
||
|
result = values.str.upper()
|
||
|
exp = Series(["OM", np.nan, "NOM", "NOM"])
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
result = result.str.lower()
|
||
|
tm.assert_series_equal(result, values)
|
||
|
|
||
|
# mixed
|
||
|
mixed = Series(["a", np.nan, "b", True, datetime.today(), "foo", None, 1, 2.0])
|
||
|
mixed = mixed.str.upper()
|
||
|
rs = Series(mixed).str.lower()
|
||
|
xp = Series(["a", np.nan, "b", np.nan, np.nan, "foo", np.nan, np.nan, np.nan])
|
||
|
assert isinstance(rs, Series)
|
||
|
tm.assert_series_equal(rs, xp)
|
||
|
|
||
|
def test_capitalize(self):
|
||
|
values = Series(["FOO", "BAR", np.nan, "Blah", "blurg"])
|
||
|
result = values.str.capitalize()
|
||
|
exp = Series(["Foo", "Bar", np.nan, "Blah", "Blurg"])
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
# mixed
|
||
|
mixed = Series(
|
||
|
["FOO", np.nan, "bar", True, datetime.today(), "blah", None, 1, 2.0]
|
||
|
)
|
||
|
mixed = mixed.str.capitalize()
|
||
|
exp = Series(
|
||
|
["Foo", np.nan, "Bar", np.nan, np.nan, "Blah", np.nan, np.nan, np.nan]
|
||
|
)
|
||
|
tm.assert_almost_equal(mixed, exp)
|
||
|
|
||
|
def test_swapcase(self):
|
||
|
values = Series(["FOO", "BAR", np.nan, "Blah", "blurg"])
|
||
|
result = values.str.swapcase()
|
||
|
exp = Series(["foo", "bar", np.nan, "bLAH", "BLURG"])
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
# mixed
|
||
|
mixed = Series(
|
||
|
["FOO", np.nan, "bar", True, datetime.today(), "Blah", None, 1, 2.0]
|
||
|
)
|
||
|
mixed = mixed.str.swapcase()
|
||
|
exp = Series(
|
||
|
["foo", np.nan, "BAR", np.nan, np.nan, "bLAH", np.nan, np.nan, np.nan]
|
||
|
)
|
||
|
tm.assert_almost_equal(mixed, exp)
|
||
|
|
||
|
def test_casemethods(self):
|
||
|
values = ["aaa", "bbb", "CCC", "Dddd", "eEEE"]
|
||
|
s = Series(values)
|
||
|
assert s.str.lower().tolist() == [v.lower() for v in values]
|
||
|
assert s.str.upper().tolist() == [v.upper() for v in values]
|
||
|
assert s.str.title().tolist() == [v.title() for v in values]
|
||
|
assert s.str.capitalize().tolist() == [v.capitalize() for v in values]
|
||
|
assert s.str.swapcase().tolist() == [v.swapcase() for v in values]
|
||
|
|
||
|
def test_replace(self):
|
||
|
values = Series(["fooBAD__barBAD", np.nan])
|
||
|
|
||
|
result = values.str.replace("BAD[_]*", "")
|
||
|
exp = Series(["foobar", np.nan])
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
result = values.str.replace("BAD[_]*", "", n=1)
|
||
|
exp = Series(["foobarBAD", np.nan])
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
# mixed
|
||
|
mixed = Series(
|
||
|
["aBAD", np.nan, "bBAD", True, datetime.today(), "fooBAD", None, 1, 2.0]
|
||
|
)
|
||
|
|
||
|
rs = Series(mixed).str.replace("BAD[_]*", "")
|
||
|
xp = Series(["a", np.nan, "b", np.nan, np.nan, "foo", np.nan, np.nan, np.nan])
|
||
|
assert isinstance(rs, Series)
|
||
|
tm.assert_almost_equal(rs, xp)
|
||
|
|
||
|
# flags + unicode
|
||
|
values = Series([b"abcd,\xc3\xa0".decode("utf-8")])
|
||
|
exp = Series([b"abcd, \xc3\xa0".decode("utf-8")])
|
||
|
result = values.str.replace(r"(?<=\w),(?=\w)", ", ", flags=re.UNICODE)
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
# GH 13438
|
||
|
msg = "repl must be a string or callable"
|
||
|
for klass in (Series, Index):
|
||
|
for repl in (None, 3, {"a": "b"}):
|
||
|
for data in (["a", "b", None], ["a", "b", "c", "ad"]):
|
||
|
values = klass(data)
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
values.str.replace("a", repl)
|
||
|
|
||
|
def test_replace_callable(self):
|
||
|
# GH 15055
|
||
|
values = Series(["fooBAD__barBAD", np.nan])
|
||
|
|
||
|
# test with callable
|
||
|
repl = lambda m: m.group(0).swapcase()
|
||
|
result = values.str.replace("[a-z][A-Z]{2}", repl, n=2)
|
||
|
exp = Series(["foObaD__baRbaD", np.nan])
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
# test with wrong number of arguments, raising an error
|
||
|
p_err = (
|
||
|
r"((takes)|(missing)) (?(2)from \d+ to )?\d+ "
|
||
|
r"(?(3)required )positional arguments?"
|
||
|
)
|
||
|
|
||
|
repl = lambda: None
|
||
|
with pytest.raises(TypeError, match=p_err):
|
||
|
values.str.replace("a", repl)
|
||
|
|
||
|
repl = lambda m, x: None
|
||
|
with pytest.raises(TypeError, match=p_err):
|
||
|
values.str.replace("a", repl)
|
||
|
|
||
|
repl = lambda m, x, y=None: None
|
||
|
with pytest.raises(TypeError, match=p_err):
|
||
|
values.str.replace("a", repl)
|
||
|
|
||
|
# test regex named groups
|
||
|
values = Series(["Foo Bar Baz", np.nan])
|
||
|
pat = r"(?P<first>\w+) (?P<middle>\w+) (?P<last>\w+)"
|
||
|
repl = lambda m: m.group("middle").swapcase()
|
||
|
result = values.str.replace(pat, repl)
|
||
|
exp = Series(["bAR", np.nan])
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
def test_replace_compiled_regex(self):
|
||
|
# GH 15446
|
||
|
values = Series(["fooBAD__barBAD", np.nan])
|
||
|
|
||
|
# test with compiled regex
|
||
|
pat = re.compile(r"BAD[_]*")
|
||
|
result = values.str.replace(pat, "")
|
||
|
exp = Series(["foobar", np.nan])
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
result = values.str.replace(pat, "", n=1)
|
||
|
exp = Series(["foobarBAD", np.nan])
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
# mixed
|
||
|
mixed = Series(
|
||
|
["aBAD", np.nan, "bBAD", True, datetime.today(), "fooBAD", None, 1, 2.0]
|
||
|
)
|
||
|
|
||
|
rs = Series(mixed).str.replace(pat, "")
|
||
|
xp = Series(["a", np.nan, "b", np.nan, np.nan, "foo", np.nan, np.nan, np.nan])
|
||
|
assert isinstance(rs, Series)
|
||
|
tm.assert_almost_equal(rs, xp)
|
||
|
|
||
|
# flags + unicode
|
||
|
values = Series([b"abcd,\xc3\xa0".decode("utf-8")])
|
||
|
exp = Series([b"abcd, \xc3\xa0".decode("utf-8")])
|
||
|
pat = re.compile(r"(?<=\w),(?=\w)", flags=re.UNICODE)
|
||
|
result = values.str.replace(pat, ", ")
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
# case and flags provided to str.replace will have no effect
|
||
|
# and will produce warnings
|
||
|
values = Series(["fooBAD__barBAD__bad", np.nan])
|
||
|
pat = re.compile(r"BAD[_]*")
|
||
|
|
||
|
with pytest.raises(ValueError, match="case and flags cannot be"):
|
||
|
result = values.str.replace(pat, "", flags=re.IGNORECASE)
|
||
|
|
||
|
with pytest.raises(ValueError, match="case and flags cannot be"):
|
||
|
result = values.str.replace(pat, "", case=False)
|
||
|
|
||
|
with pytest.raises(ValueError, match="case and flags cannot be"):
|
||
|
result = values.str.replace(pat, "", case=True)
|
||
|
|
||
|
# test with callable
|
||
|
values = Series(["fooBAD__barBAD", np.nan])
|
||
|
repl = lambda m: m.group(0).swapcase()
|
||
|
pat = re.compile("[a-z][A-Z]{2}")
|
||
|
result = values.str.replace(pat, repl, n=2)
|
||
|
exp = Series(["foObaD__baRbaD", np.nan])
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
def test_replace_literal(self):
|
||
|
# GH16808 literal replace (regex=False vs regex=True)
|
||
|
values = Series(["f.o", "foo", np.nan])
|
||
|
exp = Series(["bao", "bao", np.nan])
|
||
|
result = values.str.replace("f.", "ba")
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
exp = Series(["bao", "foo", np.nan])
|
||
|
result = values.str.replace("f.", "ba", regex=False)
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
# Cannot do a literal replace if given a callable repl or compiled
|
||
|
# pattern
|
||
|
callable_repl = lambda m: m.group(0).swapcase()
|
||
|
compiled_pat = re.compile("[a-z][A-Z]{2}")
|
||
|
|
||
|
msg = "Cannot use a callable replacement when regex=False"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
values.str.replace("abc", callable_repl, regex=False)
|
||
|
|
||
|
msg = "Cannot use a compiled regex as replacement pattern with regex=False"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
values.str.replace(compiled_pat, "", regex=False)
|
||
|
|
||
|
def test_repeat(self):
|
||
|
values = Series(["a", "b", np.nan, "c", np.nan, "d"])
|
||
|
|
||
|
result = values.str.repeat(3)
|
||
|
exp = Series(["aaa", "bbb", np.nan, "ccc", np.nan, "ddd"])
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
result = values.str.repeat([1, 2, 3, 4, 5, 6])
|
||
|
exp = Series(["a", "bb", np.nan, "cccc", np.nan, "dddddd"])
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
# mixed
|
||
|
mixed = Series(["a", np.nan, "b", True, datetime.today(), "foo", None, 1, 2.0])
|
||
|
|
||
|
rs = Series(mixed).str.repeat(3)
|
||
|
xp = Series(
|
||
|
["aaa", np.nan, "bbb", np.nan, np.nan, "foofoofoo", np.nan, np.nan, np.nan]
|
||
|
)
|
||
|
assert isinstance(rs, Series)
|
||
|
tm.assert_series_equal(rs, xp)
|
||
|
|
||
|
def test_repeat_with_null(self):
|
||
|
# GH: 31632
|
||
|
values = Series(["a", None], dtype="string")
|
||
|
result = values.str.repeat([3, 4])
|
||
|
exp = Series(["aaa", None], dtype="string")
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
values = Series(["a", "b"], dtype="string")
|
||
|
result = values.str.repeat([3, None])
|
||
|
exp = Series(["aaa", None], dtype="string")
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
def test_match(self):
|
||
|
# New match behavior introduced in 0.13
|
||
|
values = Series(["fooBAD__barBAD", np.nan, "foo"])
|
||
|
result = values.str.match(".*(BAD[_]+).*(BAD)")
|
||
|
exp = Series([True, np.nan, False])
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
values = Series(["fooBAD__barBAD", "BAD_BADleroybrown", np.nan, "foo"])
|
||
|
result = values.str.match(".*BAD[_]+.*BAD")
|
||
|
exp = Series([True, True, np.nan, False])
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
# mixed
|
||
|
mixed = Series(
|
||
|
[
|
||
|
"aBAD_BAD",
|
||
|
np.nan,
|
||
|
"BAD_b_BAD",
|
||
|
True,
|
||
|
datetime.today(),
|
||
|
"foo",
|
||
|
None,
|
||
|
1,
|
||
|
2.0,
|
||
|
]
|
||
|
)
|
||
|
rs = Series(mixed).str.match(".*(BAD[_]+).*(BAD)")
|
||
|
xp = Series([True, np.nan, True, np.nan, np.nan, False, np.nan, np.nan, np.nan])
|
||
|
assert isinstance(rs, Series)
|
||
|
tm.assert_series_equal(rs, xp)
|
||
|
|
||
|
# na GH #6609
|
||
|
res = Series(["a", 0, np.nan]).str.match("a", na=False)
|
||
|
exp = Series([True, False, False])
|
||
|
tm.assert_series_equal(exp, res)
|
||
|
res = Series(["a", 0, np.nan]).str.match("a")
|
||
|
exp = Series([True, np.nan, np.nan])
|
||
|
tm.assert_series_equal(exp, res)
|
||
|
|
||
|
def test_fullmatch(self):
|
||
|
# GH 32806
|
||
|
values = Series(["fooBAD__barBAD", "BAD_BADleroybrown", np.nan, "foo"])
|
||
|
result = values.str.fullmatch(".*BAD[_]+.*BAD")
|
||
|
exp = Series([True, False, np.nan, False])
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
# Make sure that the new string arrays work
|
||
|
string_values = Series(
|
||
|
["fooBAD__barBAD", "BAD_BADleroybrown", np.nan, "foo"], dtype="string"
|
||
|
)
|
||
|
result = string_values.str.fullmatch(".*BAD[_]+.*BAD")
|
||
|
# Result is nullable boolean with StringDtype
|
||
|
string_exp = Series([True, False, np.nan, False], dtype="boolean")
|
||
|
tm.assert_series_equal(result, string_exp)
|
||
|
|
||
|
def test_extract_expand_None(self):
|
||
|
values = Series(["fooBAD__barBAD", np.nan, "foo"])
|
||
|
with pytest.raises(ValueError, match="expand must be True or False"):
|
||
|
values.str.extract(".*(BAD[_]+).*(BAD)", expand=None)
|
||
|
|
||
|
def test_extract_expand_unspecified(self):
|
||
|
values = Series(["fooBAD__barBAD", np.nan, "foo"])
|
||
|
result_unspecified = values.str.extract(".*(BAD[_]+).*")
|
||
|
assert isinstance(result_unspecified, DataFrame)
|
||
|
result_true = values.str.extract(".*(BAD[_]+).*", expand=True)
|
||
|
tm.assert_frame_equal(result_unspecified, result_true)
|
||
|
|
||
|
def test_extract_expand_False(self):
|
||
|
# Contains tests like those in test_match and some others.
|
||
|
values = Series(["fooBAD__barBAD", np.nan, "foo"])
|
||
|
er = [np.nan, np.nan] # empty row
|
||
|
|
||
|
result = values.str.extract(".*(BAD[_]+).*(BAD)", expand=False)
|
||
|
exp = DataFrame([["BAD__", "BAD"], er, er])
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
# mixed
|
||
|
mixed = Series(
|
||
|
[
|
||
|
"aBAD_BAD",
|
||
|
np.nan,
|
||
|
"BAD_b_BAD",
|
||
|
True,
|
||
|
datetime.today(),
|
||
|
"foo",
|
||
|
None,
|
||
|
1,
|
||
|
2.0,
|
||
|
]
|
||
|
)
|
||
|
|
||
|
rs = Series(mixed).str.extract(".*(BAD[_]+).*(BAD)", expand=False)
|
||
|
exp = DataFrame([["BAD_", "BAD"], er, ["BAD_", "BAD"], er, er, er, er, er, er])
|
||
|
tm.assert_frame_equal(rs, exp)
|
||
|
|
||
|
# unicode
|
||
|
values = Series(["fooBAD__barBAD", np.nan, "foo"])
|
||
|
|
||
|
result = values.str.extract(".*(BAD[_]+).*(BAD)", expand=False)
|
||
|
exp = DataFrame([["BAD__", "BAD"], er, er])
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
# GH9980
|
||
|
# Index only works with one regex group since
|
||
|
# multi-group would expand to a frame
|
||
|
idx = Index(["A1", "A2", "A3", "A4", "B5"])
|
||
|
with pytest.raises(ValueError, match="supported"):
|
||
|
idx.str.extract("([AB])([123])", expand=False)
|
||
|
|
||
|
# these should work for both Series and Index
|
||
|
for klass in [Series, Index]:
|
||
|
# no groups
|
||
|
s_or_idx = klass(["A1", "B2", "C3"])
|
||
|
msg = "pattern contains no capture groups"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
s_or_idx.str.extract("[ABC][123]", expand=False)
|
||
|
|
||
|
# only non-capturing groups
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
s_or_idx.str.extract("(?:[AB]).*", expand=False)
|
||
|
|
||
|
# single group renames series/index properly
|
||
|
s_or_idx = klass(["A1", "A2"])
|
||
|
result = s_or_idx.str.extract(r"(?P<uno>A)\d", expand=False)
|
||
|
assert result.name == "uno"
|
||
|
|
||
|
exp = klass(["A", "A"], name="uno")
|
||
|
if klass == Series:
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
else:
|
||
|
tm.assert_index_equal(result, exp)
|
||
|
|
||
|
s = Series(["A1", "B2", "C3"])
|
||
|
# one group, no matches
|
||
|
result = s.str.extract("(_)", expand=False)
|
||
|
exp = Series([np.nan, np.nan, np.nan], dtype=object)
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
# two groups, no matches
|
||
|
result = s.str.extract("(_)(_)", expand=False)
|
||
|
exp = DataFrame(
|
||
|
[[np.nan, np.nan], [np.nan, np.nan], [np.nan, np.nan]], dtype=object
|
||
|
)
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
# one group, some matches
|
||
|
result = s.str.extract("([AB])[123]", expand=False)
|
||
|
exp = Series(["A", "B", np.nan])
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
# two groups, some matches
|
||
|
result = s.str.extract("([AB])([123])", expand=False)
|
||
|
exp = DataFrame([["A", "1"], ["B", "2"], [np.nan, np.nan]])
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
# one named group
|
||
|
result = s.str.extract("(?P<letter>[AB])", expand=False)
|
||
|
exp = Series(["A", "B", np.nan], name="letter")
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
# two named groups
|
||
|
result = s.str.extract("(?P<letter>[AB])(?P<number>[123])", expand=False)
|
||
|
exp = DataFrame(
|
||
|
[["A", "1"], ["B", "2"], [np.nan, np.nan]], columns=["letter", "number"]
|
||
|
)
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
# mix named and unnamed groups
|
||
|
result = s.str.extract("([AB])(?P<number>[123])", expand=False)
|
||
|
exp = DataFrame(
|
||
|
[["A", "1"], ["B", "2"], [np.nan, np.nan]], columns=[0, "number"]
|
||
|
)
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
# one normal group, one non-capturing group
|
||
|
result = s.str.extract("([AB])(?:[123])", expand=False)
|
||
|
exp = Series(["A", "B", np.nan])
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
# two normal groups, one non-capturing group
|
||
|
result = Series(["A11", "B22", "C33"]).str.extract(
|
||
|
"([AB])([123])(?:[123])", expand=False
|
||
|
)
|
||
|
exp = DataFrame([["A", "1"], ["B", "2"], [np.nan, np.nan]])
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
# one optional group followed by one normal group
|
||
|
result = Series(["A1", "B2", "3"]).str.extract(
|
||
|
"(?P<letter>[AB])?(?P<number>[123])", expand=False
|
||
|
)
|
||
|
exp = DataFrame(
|
||
|
[["A", "1"], ["B", "2"], [np.nan, "3"]], columns=["letter", "number"]
|
||
|
)
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
# one normal group followed by one optional group
|
||
|
result = Series(["A1", "B2", "C"]).str.extract(
|
||
|
"(?P<letter>[ABC])(?P<number>[123])?", expand=False
|
||
|
)
|
||
|
exp = DataFrame(
|
||
|
[["A", "1"], ["B", "2"], ["C", np.nan]], columns=["letter", "number"]
|
||
|
)
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
# GH6348
|
||
|
# not passing index to the extractor
|
||
|
def check_index(index):
|
||
|
data = ["A1", "B2", "C"]
|
||
|
index = index[: len(data)]
|
||
|
s = Series(data, index=index)
|
||
|
result = s.str.extract(r"(\d)", expand=False)
|
||
|
exp = Series(["1", "2", np.nan], index=index)
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
result = Series(data, index=index).str.extract(
|
||
|
r"(?P<letter>\D)(?P<number>\d)?", expand=False
|
||
|
)
|
||
|
e_list = [["A", "1"], ["B", "2"], ["C", np.nan]]
|
||
|
exp = DataFrame(e_list, columns=["letter", "number"], index=index)
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
i_funs = [
|
||
|
tm.makeStringIndex,
|
||
|
tm.makeUnicodeIndex,
|
||
|
tm.makeIntIndex,
|
||
|
tm.makeDateIndex,
|
||
|
tm.makePeriodIndex,
|
||
|
tm.makeRangeIndex,
|
||
|
]
|
||
|
for index in i_funs:
|
||
|
check_index(index())
|
||
|
|
||
|
# single_series_name_is_preserved.
|
||
|
s = Series(["a3", "b3", "c2"], name="bob")
|
||
|
r = s.str.extract(r"(?P<sue>[a-z])", expand=False)
|
||
|
e = Series(["a", "b", "c"], name="sue")
|
||
|
tm.assert_series_equal(r, e)
|
||
|
assert r.name == e.name
|
||
|
|
||
|
def test_extract_expand_True(self):
|
||
|
# Contains tests like those in test_match and some others.
|
||
|
values = Series(["fooBAD__barBAD", np.nan, "foo"])
|
||
|
er = [np.nan, np.nan] # empty row
|
||
|
|
||
|
result = values.str.extract(".*(BAD[_]+).*(BAD)", expand=True)
|
||
|
exp = DataFrame([["BAD__", "BAD"], er, er])
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
# mixed
|
||
|
mixed = Series(
|
||
|
[
|
||
|
"aBAD_BAD",
|
||
|
np.nan,
|
||
|
"BAD_b_BAD",
|
||
|
True,
|
||
|
datetime.today(),
|
||
|
"foo",
|
||
|
None,
|
||
|
1,
|
||
|
2.0,
|
||
|
]
|
||
|
)
|
||
|
|
||
|
rs = Series(mixed).str.extract(".*(BAD[_]+).*(BAD)", expand=True)
|
||
|
exp = DataFrame([["BAD_", "BAD"], er, ["BAD_", "BAD"], er, er, er, er, er, er])
|
||
|
tm.assert_frame_equal(rs, exp)
|
||
|
|
||
|
# these should work for both Series and Index
|
||
|
for klass in [Series, Index]:
|
||
|
# no groups
|
||
|
s_or_idx = klass(["A1", "B2", "C3"])
|
||
|
msg = "pattern contains no capture groups"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
s_or_idx.str.extract("[ABC][123]", expand=True)
|
||
|
|
||
|
# only non-capturing groups
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
s_or_idx.str.extract("(?:[AB]).*", expand=True)
|
||
|
|
||
|
# single group renames series/index properly
|
||
|
s_or_idx = klass(["A1", "A2"])
|
||
|
result_df = s_or_idx.str.extract(r"(?P<uno>A)\d", expand=True)
|
||
|
assert isinstance(result_df, DataFrame)
|
||
|
result_series = result_df["uno"]
|
||
|
tm.assert_series_equal(result_series, Series(["A", "A"], name="uno"))
|
||
|
|
||
|
def test_extract_series(self):
|
||
|
# extract should give the same result whether or not the
|
||
|
# series has a name.
|
||
|
for series_name in None, "series_name":
|
||
|
s = Series(["A1", "B2", "C3"], name=series_name)
|
||
|
# one group, no matches
|
||
|
result = s.str.extract("(_)", expand=True)
|
||
|
exp = DataFrame([np.nan, np.nan, np.nan], dtype=object)
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
# two groups, no matches
|
||
|
result = s.str.extract("(_)(_)", expand=True)
|
||
|
exp = DataFrame(
|
||
|
[[np.nan, np.nan], [np.nan, np.nan], [np.nan, np.nan]], dtype=object
|
||
|
)
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
# one group, some matches
|
||
|
result = s.str.extract("([AB])[123]", expand=True)
|
||
|
exp = DataFrame(["A", "B", np.nan])
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
# two groups, some matches
|
||
|
result = s.str.extract("([AB])([123])", expand=True)
|
||
|
exp = DataFrame([["A", "1"], ["B", "2"], [np.nan, np.nan]])
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
# one named group
|
||
|
result = s.str.extract("(?P<letter>[AB])", expand=True)
|
||
|
exp = DataFrame({"letter": ["A", "B", np.nan]})
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
# two named groups
|
||
|
result = s.str.extract("(?P<letter>[AB])(?P<number>[123])", expand=True)
|
||
|
e_list = [["A", "1"], ["B", "2"], [np.nan, np.nan]]
|
||
|
exp = DataFrame(e_list, columns=["letter", "number"])
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
# mix named and unnamed groups
|
||
|
result = s.str.extract("([AB])(?P<number>[123])", expand=True)
|
||
|
exp = DataFrame(e_list, columns=[0, "number"])
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
# one normal group, one non-capturing group
|
||
|
result = s.str.extract("([AB])(?:[123])", expand=True)
|
||
|
exp = DataFrame(["A", "B", np.nan])
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
def test_extract_optional_groups(self):
|
||
|
|
||
|
# two normal groups, one non-capturing group
|
||
|
result = Series(["A11", "B22", "C33"]).str.extract(
|
||
|
"([AB])([123])(?:[123])", expand=True
|
||
|
)
|
||
|
exp = DataFrame([["A", "1"], ["B", "2"], [np.nan, np.nan]])
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
# one optional group followed by one normal group
|
||
|
result = Series(["A1", "B2", "3"]).str.extract(
|
||
|
"(?P<letter>[AB])?(?P<number>[123])", expand=True
|
||
|
)
|
||
|
e_list = [["A", "1"], ["B", "2"], [np.nan, "3"]]
|
||
|
exp = DataFrame(e_list, columns=["letter", "number"])
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
# one normal group followed by one optional group
|
||
|
result = Series(["A1", "B2", "C"]).str.extract(
|
||
|
"(?P<letter>[ABC])(?P<number>[123])?", expand=True
|
||
|
)
|
||
|
e_list = [["A", "1"], ["B", "2"], ["C", np.nan]]
|
||
|
exp = DataFrame(e_list, columns=["letter", "number"])
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
# GH6348
|
||
|
# not passing index to the extractor
|
||
|
def check_index(index):
|
||
|
data = ["A1", "B2", "C"]
|
||
|
index = index[: len(data)]
|
||
|
result = Series(data, index=index).str.extract(r"(\d)", expand=True)
|
||
|
exp = DataFrame(["1", "2", np.nan], index=index)
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
result = Series(data, index=index).str.extract(
|
||
|
r"(?P<letter>\D)(?P<number>\d)?", expand=True
|
||
|
)
|
||
|
e_list = [["A", "1"], ["B", "2"], ["C", np.nan]]
|
||
|
exp = DataFrame(e_list, columns=["letter", "number"], index=index)
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
i_funs = [
|
||
|
tm.makeStringIndex,
|
||
|
tm.makeUnicodeIndex,
|
||
|
tm.makeIntIndex,
|
||
|
tm.makeDateIndex,
|
||
|
tm.makePeriodIndex,
|
||
|
tm.makeRangeIndex,
|
||
|
]
|
||
|
for index in i_funs:
|
||
|
check_index(index())
|
||
|
|
||
|
def test_extract_single_group_returns_frame(self):
|
||
|
# GH11386 extract should always return DataFrame, even when
|
||
|
# there is only one group. Prior to v0.18.0, extract returned
|
||
|
# Series when there was only one group in the regex.
|
||
|
s = Series(["a3", "b3", "c2"], name="series_name")
|
||
|
r = s.str.extract(r"(?P<letter>[a-z])", expand=True)
|
||
|
e = DataFrame({"letter": ["a", "b", "c"]})
|
||
|
tm.assert_frame_equal(r, e)
|
||
|
|
||
|
def test_extractall(self):
|
||
|
subject_list = [
|
||
|
"dave@google.com",
|
||
|
"tdhock5@gmail.com",
|
||
|
"maudelaperriere@gmail.com",
|
||
|
"rob@gmail.com some text steve@gmail.com",
|
||
|
"a@b.com some text c@d.com and e@f.com",
|
||
|
np.nan,
|
||
|
"",
|
||
|
]
|
||
|
expected_tuples = [
|
||
|
("dave", "google", "com"),
|
||
|
("tdhock5", "gmail", "com"),
|
||
|
("maudelaperriere", "gmail", "com"),
|
||
|
("rob", "gmail", "com"),
|
||
|
("steve", "gmail", "com"),
|
||
|
("a", "b", "com"),
|
||
|
("c", "d", "com"),
|
||
|
("e", "f", "com"),
|
||
|
]
|
||
|
named_pattern = r"""
|
||
|
(?P<user>[a-z0-9]+)
|
||
|
@
|
||
|
(?P<domain>[a-z]+)
|
||
|
\.
|
||
|
(?P<tld>[a-z]{2,4})
|
||
|
"""
|
||
|
expected_columns = ["user", "domain", "tld"]
|
||
|
S = Series(subject_list)
|
||
|
# extractall should return a DataFrame with one row for each
|
||
|
# match, indexed by the subject from which the match came.
|
||
|
expected_index = MultiIndex.from_tuples(
|
||
|
[(0, 0), (1, 0), (2, 0), (3, 0), (3, 1), (4, 0), (4, 1), (4, 2)],
|
||
|
names=(None, "match"),
|
||
|
)
|
||
|
expected_df = DataFrame(expected_tuples, expected_index, expected_columns)
|
||
|
computed_df = S.str.extractall(named_pattern, re.VERBOSE)
|
||
|
tm.assert_frame_equal(computed_df, expected_df)
|
||
|
|
||
|
# The index of the input Series should be used to construct
|
||
|
# the index of the output DataFrame:
|
||
|
series_index = MultiIndex.from_tuples(
|
||
|
[
|
||
|
("single", "Dave"),
|
||
|
("single", "Toby"),
|
||
|
("single", "Maude"),
|
||
|
("multiple", "robAndSteve"),
|
||
|
("multiple", "abcdef"),
|
||
|
("none", "missing"),
|
||
|
("none", "empty"),
|
||
|
]
|
||
|
)
|
||
|
Si = Series(subject_list, series_index)
|
||
|
expected_index = MultiIndex.from_tuples(
|
||
|
[
|
||
|
("single", "Dave", 0),
|
||
|
("single", "Toby", 0),
|
||
|
("single", "Maude", 0),
|
||
|
("multiple", "robAndSteve", 0),
|
||
|
("multiple", "robAndSteve", 1),
|
||
|
("multiple", "abcdef", 0),
|
||
|
("multiple", "abcdef", 1),
|
||
|
("multiple", "abcdef", 2),
|
||
|
],
|
||
|
names=(None, None, "match"),
|
||
|
)
|
||
|
expected_df = DataFrame(expected_tuples, expected_index, expected_columns)
|
||
|
computed_df = Si.str.extractall(named_pattern, re.VERBOSE)
|
||
|
tm.assert_frame_equal(computed_df, expected_df)
|
||
|
|
||
|
# MultiIndexed subject with names.
|
||
|
Sn = Series(subject_list, series_index)
|
||
|
Sn.index.names = ("matches", "description")
|
||
|
expected_index.names = ("matches", "description", "match")
|
||
|
expected_df = DataFrame(expected_tuples, expected_index, expected_columns)
|
||
|
computed_df = Sn.str.extractall(named_pattern, re.VERBOSE)
|
||
|
tm.assert_frame_equal(computed_df, expected_df)
|
||
|
|
||
|
# optional groups.
|
||
|
subject_list = ["", "A1", "32"]
|
||
|
named_pattern = "(?P<letter>[AB])?(?P<number>[123])"
|
||
|
computed_df = Series(subject_list).str.extractall(named_pattern)
|
||
|
expected_index = MultiIndex.from_tuples(
|
||
|
[(1, 0), (2, 0), (2, 1)], names=(None, "match")
|
||
|
)
|
||
|
expected_df = DataFrame(
|
||
|
[("A", "1"), (np.nan, "3"), (np.nan, "2")],
|
||
|
expected_index,
|
||
|
columns=["letter", "number"],
|
||
|
)
|
||
|
tm.assert_frame_equal(computed_df, expected_df)
|
||
|
|
||
|
# only one of two groups has a name.
|
||
|
pattern = "([AB])?(?P<number>[123])"
|
||
|
computed_df = Series(subject_list).str.extractall(pattern)
|
||
|
expected_df = DataFrame(
|
||
|
[("A", "1"), (np.nan, "3"), (np.nan, "2")],
|
||
|
expected_index,
|
||
|
columns=[0, "number"],
|
||
|
)
|
||
|
tm.assert_frame_equal(computed_df, expected_df)
|
||
|
|
||
|
def test_extractall_single_group(self):
|
||
|
# extractall(one named group) returns DataFrame with one named
|
||
|
# column.
|
||
|
s = Series(["a3", "b3", "d4c2"], name="series_name")
|
||
|
r = s.str.extractall(r"(?P<letter>[a-z])")
|
||
|
i = MultiIndex.from_tuples(
|
||
|
[(0, 0), (1, 0), (2, 0), (2, 1)], names=(None, "match")
|
||
|
)
|
||
|
e = DataFrame({"letter": ["a", "b", "d", "c"]}, i)
|
||
|
tm.assert_frame_equal(r, e)
|
||
|
|
||
|
# extractall(one un-named group) returns DataFrame with one
|
||
|
# un-named column.
|
||
|
r = s.str.extractall(r"([a-z])")
|
||
|
e = DataFrame(["a", "b", "d", "c"], i)
|
||
|
tm.assert_frame_equal(r, e)
|
||
|
|
||
|
def test_extractall_single_group_with_quantifier(self):
|
||
|
# extractall(one un-named group with quantifier) returns
|
||
|
# DataFrame with one un-named column (GH13382).
|
||
|
s = Series(["ab3", "abc3", "d4cd2"], name="series_name")
|
||
|
r = s.str.extractall(r"([a-z]+)")
|
||
|
i = MultiIndex.from_tuples(
|
||
|
[(0, 0), (1, 0), (2, 0), (2, 1)], names=(None, "match")
|
||
|
)
|
||
|
e = DataFrame(["ab", "abc", "d", "cd"], i)
|
||
|
tm.assert_frame_equal(r, e)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"data, names",
|
||
|
[
|
||
|
([], (None,)),
|
||
|
([], ("i1",)),
|
||
|
([], (None, "i2")),
|
||
|
([], ("i1", "i2")),
|
||
|
(["a3", "b3", "d4c2"], (None,)),
|
||
|
(["a3", "b3", "d4c2"], ("i1", "i2")),
|
||
|
(["a3", "b3", "d4c2"], (None, "i2")),
|
||
|
(["a3", "b3", "d4c2"], ("i1", "i2")),
|
||
|
],
|
||
|
)
|
||
|
def test_extractall_no_matches(self, data, names):
|
||
|
# GH19075 extractall with no matches should return a valid MultiIndex
|
||
|
n = len(data)
|
||
|
if len(names) == 1:
|
||
|
i = Index(range(n), name=names[0])
|
||
|
else:
|
||
|
a = (tuple([i] * (n - 1)) for i in range(n))
|
||
|
i = MultiIndex.from_tuples(a, names=names)
|
||
|
s = Series(data, name="series_name", index=i, dtype="object")
|
||
|
ei = MultiIndex.from_tuples([], names=(names + ("match",)))
|
||
|
|
||
|
# one un-named group.
|
||
|
r = s.str.extractall("(z)")
|
||
|
e = DataFrame(columns=[0], index=ei)
|
||
|
tm.assert_frame_equal(r, e)
|
||
|
|
||
|
# two un-named groups.
|
||
|
r = s.str.extractall("(z)(z)")
|
||
|
e = DataFrame(columns=[0, 1], index=ei)
|
||
|
tm.assert_frame_equal(r, e)
|
||
|
|
||
|
# one named group.
|
||
|
r = s.str.extractall("(?P<first>z)")
|
||
|
e = DataFrame(columns=["first"], index=ei)
|
||
|
tm.assert_frame_equal(r, e)
|
||
|
|
||
|
# two named groups.
|
||
|
r = s.str.extractall("(?P<first>z)(?P<second>z)")
|
||
|
e = DataFrame(columns=["first", "second"], index=ei)
|
||
|
tm.assert_frame_equal(r, e)
|
||
|
|
||
|
# one named, one un-named.
|
||
|
r = s.str.extractall("(z)(?P<second>z)")
|
||
|
e = DataFrame(columns=[0, "second"], index=ei)
|
||
|
tm.assert_frame_equal(r, e)
|
||
|
|
||
|
def test_extractall_stringindex(self):
|
||
|
s = Series(["a1a2", "b1", "c1"], name="xxx")
|
||
|
res = s.str.extractall(r"[ab](?P<digit>\d)")
|
||
|
exp_idx = MultiIndex.from_tuples(
|
||
|
[(0, 0), (0, 1), (1, 0)], names=[None, "match"]
|
||
|
)
|
||
|
exp = DataFrame({"digit": ["1", "2", "1"]}, index=exp_idx)
|
||
|
tm.assert_frame_equal(res, exp)
|
||
|
|
||
|
# index should return the same result as the default index without name
|
||
|
# thus index.name doesn't affect to the result
|
||
|
for idx in [
|
||
|
Index(["a1a2", "b1", "c1"]),
|
||
|
Index(["a1a2", "b1", "c1"], name="xxx"),
|
||
|
]:
|
||
|
|
||
|
res = idx.str.extractall(r"[ab](?P<digit>\d)")
|
||
|
tm.assert_frame_equal(res, exp)
|
||
|
|
||
|
s = Series(
|
||
|
["a1a2", "b1", "c1"],
|
||
|
name="s_name",
|
||
|
index=Index(["XX", "yy", "zz"], name="idx_name"),
|
||
|
)
|
||
|
res = s.str.extractall(r"[ab](?P<digit>\d)")
|
||
|
exp_idx = MultiIndex.from_tuples(
|
||
|
[("XX", 0), ("XX", 1), ("yy", 0)], names=["idx_name", "match"]
|
||
|
)
|
||
|
exp = DataFrame({"digit": ["1", "2", "1"]}, index=exp_idx)
|
||
|
tm.assert_frame_equal(res, exp)
|
||
|
|
||
|
def test_extractall_errors(self):
|
||
|
# Does not make sense to use extractall with a regex that has
|
||
|
# no capture groups. (it returns DataFrame with one column for
|
||
|
# each capture group)
|
||
|
s = Series(["a3", "b3", "d4c2"], name="series_name")
|
||
|
with pytest.raises(ValueError, match="no capture groups"):
|
||
|
s.str.extractall(r"[a-z]")
|
||
|
|
||
|
def test_extract_index_one_two_groups(self):
|
||
|
s = Series(["a3", "b3", "d4c2"], index=["A3", "B3", "D4"], name="series_name")
|
||
|
r = s.index.str.extract(r"([A-Z])", expand=True)
|
||
|
e = DataFrame(["A", "B", "D"])
|
||
|
tm.assert_frame_equal(r, e)
|
||
|
|
||
|
# Prior to v0.18.0, index.str.extract(regex with one group)
|
||
|
# returned Index. With more than one group, extract raised an
|
||
|
# error (GH9980). Now extract always returns DataFrame.
|
||
|
r = s.index.str.extract(r"(?P<letter>[A-Z])(?P<digit>[0-9])", expand=True)
|
||
|
e_list = [("A", "3"), ("B", "3"), ("D", "4")]
|
||
|
e = DataFrame(e_list, columns=["letter", "digit"])
|
||
|
tm.assert_frame_equal(r, e)
|
||
|
|
||
|
def test_extractall_same_as_extract(self):
|
||
|
s = Series(["a3", "b3", "c2"], name="series_name")
|
||
|
|
||
|
pattern_two_noname = r"([a-z])([0-9])"
|
||
|
extract_two_noname = s.str.extract(pattern_two_noname, expand=True)
|
||
|
has_multi_index = s.str.extractall(pattern_two_noname)
|
||
|
no_multi_index = has_multi_index.xs(0, level="match")
|
||
|
tm.assert_frame_equal(extract_two_noname, no_multi_index)
|
||
|
|
||
|
pattern_two_named = r"(?P<letter>[a-z])(?P<digit>[0-9])"
|
||
|
extract_two_named = s.str.extract(pattern_two_named, expand=True)
|
||
|
has_multi_index = s.str.extractall(pattern_two_named)
|
||
|
no_multi_index = has_multi_index.xs(0, level="match")
|
||
|
tm.assert_frame_equal(extract_two_named, no_multi_index)
|
||
|
|
||
|
pattern_one_named = r"(?P<group_name>[a-z])"
|
||
|
extract_one_named = s.str.extract(pattern_one_named, expand=True)
|
||
|
has_multi_index = s.str.extractall(pattern_one_named)
|
||
|
no_multi_index = has_multi_index.xs(0, level="match")
|
||
|
tm.assert_frame_equal(extract_one_named, no_multi_index)
|
||
|
|
||
|
pattern_one_noname = r"([a-z])"
|
||
|
extract_one_noname = s.str.extract(pattern_one_noname, expand=True)
|
||
|
has_multi_index = s.str.extractall(pattern_one_noname)
|
||
|
no_multi_index = has_multi_index.xs(0, level="match")
|
||
|
tm.assert_frame_equal(extract_one_noname, no_multi_index)
|
||
|
|
||
|
def test_extractall_same_as_extract_subject_index(self):
|
||
|
# same as above tests, but s has an MultiIndex.
|
||
|
i = MultiIndex.from_tuples(
|
||
|
[("A", "first"), ("B", "second"), ("C", "third")],
|
||
|
names=("capital", "ordinal"),
|
||
|
)
|
||
|
s = Series(["a3", "b3", "c2"], i, name="series_name")
|
||
|
|
||
|
pattern_two_noname = r"([a-z])([0-9])"
|
||
|
extract_two_noname = s.str.extract(pattern_two_noname, expand=True)
|
||
|
has_match_index = s.str.extractall(pattern_two_noname)
|
||
|
no_match_index = has_match_index.xs(0, level="match")
|
||
|
tm.assert_frame_equal(extract_two_noname, no_match_index)
|
||
|
|
||
|
pattern_two_named = r"(?P<letter>[a-z])(?P<digit>[0-9])"
|
||
|
extract_two_named = s.str.extract(pattern_two_named, expand=True)
|
||
|
has_match_index = s.str.extractall(pattern_two_named)
|
||
|
no_match_index = has_match_index.xs(0, level="match")
|
||
|
tm.assert_frame_equal(extract_two_named, no_match_index)
|
||
|
|
||
|
pattern_one_named = r"(?P<group_name>[a-z])"
|
||
|
extract_one_named = s.str.extract(pattern_one_named, expand=True)
|
||
|
has_match_index = s.str.extractall(pattern_one_named)
|
||
|
no_match_index = has_match_index.xs(0, level="match")
|
||
|
tm.assert_frame_equal(extract_one_named, no_match_index)
|
||
|
|
||
|
pattern_one_noname = r"([a-z])"
|
||
|
extract_one_noname = s.str.extract(pattern_one_noname, expand=True)
|
||
|
has_match_index = s.str.extractall(pattern_one_noname)
|
||
|
no_match_index = has_match_index.xs(0, level="match")
|
||
|
tm.assert_frame_equal(extract_one_noname, no_match_index)
|
||
|
|
||
|
def test_empty_str_methods(self):
|
||
|
empty_str = empty = Series(dtype=object)
|
||
|
empty_int = Series(dtype="int64")
|
||
|
empty_bool = Series(dtype=bool)
|
||
|
empty_bytes = Series(dtype=object)
|
||
|
|
||
|
# GH7241
|
||
|
# (extract) on empty series
|
||
|
|
||
|
tm.assert_series_equal(empty_str, empty.str.cat(empty))
|
||
|
assert "" == empty.str.cat()
|
||
|
tm.assert_series_equal(empty_str, empty.str.title())
|
||
|
tm.assert_series_equal(empty_int, empty.str.count("a"))
|
||
|
tm.assert_series_equal(empty_bool, empty.str.contains("a"))
|
||
|
tm.assert_series_equal(empty_bool, empty.str.startswith("a"))
|
||
|
tm.assert_series_equal(empty_bool, empty.str.endswith("a"))
|
||
|
tm.assert_series_equal(empty_str, empty.str.lower())
|
||
|
tm.assert_series_equal(empty_str, empty.str.upper())
|
||
|
tm.assert_series_equal(empty_str, empty.str.replace("a", "b"))
|
||
|
tm.assert_series_equal(empty_str, empty.str.repeat(3))
|
||
|
tm.assert_series_equal(empty_bool, empty.str.match("^a"))
|
||
|
tm.assert_frame_equal(
|
||
|
DataFrame(columns=[0], dtype=str), empty.str.extract("()", expand=True)
|
||
|
)
|
||
|
tm.assert_frame_equal(
|
||
|
DataFrame(columns=[0, 1], dtype=str), empty.str.extract("()()", expand=True)
|
||
|
)
|
||
|
tm.assert_series_equal(empty_str, empty.str.extract("()", expand=False))
|
||
|
tm.assert_frame_equal(
|
||
|
DataFrame(columns=[0, 1], dtype=str),
|
||
|
empty.str.extract("()()", expand=False),
|
||
|
)
|
||
|
tm.assert_frame_equal(DataFrame(dtype=str), empty.str.get_dummies())
|
||
|
tm.assert_series_equal(empty_str, empty_str.str.join(""))
|
||
|
tm.assert_series_equal(empty_int, empty.str.len())
|
||
|
tm.assert_series_equal(empty_str, empty_str.str.findall("a"))
|
||
|
tm.assert_series_equal(empty_int, empty.str.find("a"))
|
||
|
tm.assert_series_equal(empty_int, empty.str.rfind("a"))
|
||
|
tm.assert_series_equal(empty_str, empty.str.pad(42))
|
||
|
tm.assert_series_equal(empty_str, empty.str.center(42))
|
||
|
tm.assert_series_equal(empty_str, empty.str.split("a"))
|
||
|
tm.assert_series_equal(empty_str, empty.str.rsplit("a"))
|
||
|
tm.assert_series_equal(empty_str, empty.str.partition("a", expand=False))
|
||
|
tm.assert_series_equal(empty_str, empty.str.rpartition("a", expand=False))
|
||
|
tm.assert_series_equal(empty_str, empty.str.slice(stop=1))
|
||
|
tm.assert_series_equal(empty_str, empty.str.slice(step=1))
|
||
|
tm.assert_series_equal(empty_str, empty.str.strip())
|
||
|
tm.assert_series_equal(empty_str, empty.str.lstrip())
|
||
|
tm.assert_series_equal(empty_str, empty.str.rstrip())
|
||
|
tm.assert_series_equal(empty_str, empty.str.wrap(42))
|
||
|
tm.assert_series_equal(empty_str, empty.str.get(0))
|
||
|
tm.assert_series_equal(empty_str, empty_bytes.str.decode("ascii"))
|
||
|
tm.assert_series_equal(empty_bytes, empty.str.encode("ascii"))
|
||
|
# ismethods should always return boolean (GH 29624)
|
||
|
tm.assert_series_equal(empty_bool, empty.str.isalnum())
|
||
|
tm.assert_series_equal(empty_bool, empty.str.isalpha())
|
||
|
tm.assert_series_equal(empty_bool, empty.str.isdigit())
|
||
|
tm.assert_series_equal(empty_bool, empty.str.isspace())
|
||
|
tm.assert_series_equal(empty_bool, empty.str.islower())
|
||
|
tm.assert_series_equal(empty_bool, empty.str.isupper())
|
||
|
tm.assert_series_equal(empty_bool, empty.str.istitle())
|
||
|
tm.assert_series_equal(empty_bool, empty.str.isnumeric())
|
||
|
tm.assert_series_equal(empty_bool, empty.str.isdecimal())
|
||
|
tm.assert_series_equal(empty_str, empty.str.capitalize())
|
||
|
tm.assert_series_equal(empty_str, empty.str.swapcase())
|
||
|
tm.assert_series_equal(empty_str, empty.str.normalize("NFC"))
|
||
|
|
||
|
table = str.maketrans("a", "b")
|
||
|
tm.assert_series_equal(empty_str, empty.str.translate(table))
|
||
|
|
||
|
def test_empty_str_methods_to_frame(self):
|
||
|
empty = Series(dtype=str)
|
||
|
empty_df = DataFrame()
|
||
|
tm.assert_frame_equal(empty_df, empty.str.partition("a"))
|
||
|
tm.assert_frame_equal(empty_df, empty.str.rpartition("a"))
|
||
|
|
||
|
def test_ismethods(self):
|
||
|
values = ["A", "b", "Xy", "4", "3A", "", "TT", "55", "-", " "]
|
||
|
str_s = Series(values)
|
||
|
alnum_e = [True, True, True, True, True, False, True, True, False, False]
|
||
|
alpha_e = [True, True, True, False, False, False, True, False, False, False]
|
||
|
digit_e = [False, False, False, True, False, False, False, True, False, False]
|
||
|
|
||
|
# TODO: unused
|
||
|
num_e = [ # noqa
|
||
|
False,
|
||
|
False,
|
||
|
False,
|
||
|
True,
|
||
|
False,
|
||
|
False,
|
||
|
False,
|
||
|
True,
|
||
|
False,
|
||
|
False,
|
||
|
]
|
||
|
|
||
|
space_e = [False, False, False, False, False, False, False, False, False, True]
|
||
|
lower_e = [False, True, False, False, False, False, False, False, False, False]
|
||
|
upper_e = [True, False, False, False, True, False, True, False, False, False]
|
||
|
title_e = [True, False, True, False, True, False, False, False, False, False]
|
||
|
|
||
|
tm.assert_series_equal(str_s.str.isalnum(), Series(alnum_e))
|
||
|
tm.assert_series_equal(str_s.str.isalpha(), Series(alpha_e))
|
||
|
tm.assert_series_equal(str_s.str.isdigit(), Series(digit_e))
|
||
|
tm.assert_series_equal(str_s.str.isspace(), Series(space_e))
|
||
|
tm.assert_series_equal(str_s.str.islower(), Series(lower_e))
|
||
|
tm.assert_series_equal(str_s.str.isupper(), Series(upper_e))
|
||
|
tm.assert_series_equal(str_s.str.istitle(), Series(title_e))
|
||
|
|
||
|
assert str_s.str.isalnum().tolist() == [v.isalnum() for v in values]
|
||
|
assert str_s.str.isalpha().tolist() == [v.isalpha() for v in values]
|
||
|
assert str_s.str.isdigit().tolist() == [v.isdigit() for v in values]
|
||
|
assert str_s.str.isspace().tolist() == [v.isspace() for v in values]
|
||
|
assert str_s.str.islower().tolist() == [v.islower() for v in values]
|
||
|
assert str_s.str.isupper().tolist() == [v.isupper() for v in values]
|
||
|
assert str_s.str.istitle().tolist() == [v.istitle() for v in values]
|
||
|
|
||
|
def test_isnumeric(self):
|
||
|
# 0x00bc: ¼ VULGAR FRACTION ONE QUARTER
|
||
|
# 0x2605: ★ not number
|
||
|
# 0x1378: ፸ ETHIOPIC NUMBER SEVENTY
|
||
|
# 0xFF13: 3 Em 3
|
||
|
values = ["A", "3", "¼", "★", "፸", "3", "four"]
|
||
|
s = Series(values)
|
||
|
numeric_e = [False, True, True, False, True, True, False]
|
||
|
decimal_e = [False, True, False, False, False, True, False]
|
||
|
tm.assert_series_equal(s.str.isnumeric(), Series(numeric_e))
|
||
|
tm.assert_series_equal(s.str.isdecimal(), Series(decimal_e))
|
||
|
|
||
|
unicodes = ["A", "3", "¼", "★", "፸", "3", "four"]
|
||
|
assert s.str.isnumeric().tolist() == [v.isnumeric() for v in unicodes]
|
||
|
assert s.str.isdecimal().tolist() == [v.isdecimal() for v in unicodes]
|
||
|
|
||
|
values = ["A", np.nan, "¼", "★", np.nan, "3", "four"]
|
||
|
s = Series(values)
|
||
|
numeric_e = [False, np.nan, True, False, np.nan, True, False]
|
||
|
decimal_e = [False, np.nan, False, False, np.nan, True, False]
|
||
|
tm.assert_series_equal(s.str.isnumeric(), Series(numeric_e))
|
||
|
tm.assert_series_equal(s.str.isdecimal(), Series(decimal_e))
|
||
|
|
||
|
def test_get_dummies(self):
|
||
|
s = Series(["a|b", "a|c", np.nan])
|
||
|
result = s.str.get_dummies("|")
|
||
|
expected = DataFrame([[1, 1, 0], [1, 0, 1], [0, 0, 0]], columns=list("abc"))
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
s = Series(["a;b", "a", 7])
|
||
|
result = s.str.get_dummies(";")
|
||
|
expected = DataFrame([[0, 1, 1], [0, 1, 0], [1, 0, 0]], columns=list("7ab"))
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
# GH9980, GH8028
|
||
|
idx = Index(["a|b", "a|c", "b|c"])
|
||
|
result = idx.str.get_dummies("|")
|
||
|
|
||
|
expected = MultiIndex.from_tuples(
|
||
|
[(1, 1, 0), (1, 0, 1), (0, 1, 1)], names=("a", "b", "c")
|
||
|
)
|
||
|
tm.assert_index_equal(result, expected)
|
||
|
|
||
|
def test_get_dummies_with_name_dummy(self):
|
||
|
# GH 12180
|
||
|
# Dummies named 'name' should work as expected
|
||
|
s = Series(["a", "b,name", "b"])
|
||
|
result = s.str.get_dummies(",")
|
||
|
expected = DataFrame(
|
||
|
[[1, 0, 0], [0, 1, 1], [0, 1, 0]], columns=["a", "b", "name"]
|
||
|
)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
idx = Index(["a|b", "name|c", "b|name"])
|
||
|
result = idx.str.get_dummies("|")
|
||
|
|
||
|
expected = MultiIndex.from_tuples(
|
||
|
[(1, 1, 0, 0), (0, 0, 1, 1), (0, 1, 0, 1)], names=("a", "b", "c", "name")
|
||
|
)
|
||
|
tm.assert_index_equal(result, expected)
|
||
|
|
||
|
def test_join(self):
|
||
|
values = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"])
|
||
|
result = values.str.split("_").str.join("_")
|
||
|
tm.assert_series_equal(values, result)
|
||
|
|
||
|
# mixed
|
||
|
mixed = Series(
|
||
|
[
|
||
|
"a_b",
|
||
|
np.nan,
|
||
|
"asdf_cas_asdf",
|
||
|
True,
|
||
|
datetime.today(),
|
||
|
"foo",
|
||
|
None,
|
||
|
1,
|
||
|
2.0,
|
||
|
]
|
||
|
)
|
||
|
|
||
|
rs = Series(mixed).str.split("_").str.join("_")
|
||
|
xp = Series(
|
||
|
[
|
||
|
"a_b",
|
||
|
np.nan,
|
||
|
"asdf_cas_asdf",
|
||
|
np.nan,
|
||
|
np.nan,
|
||
|
"foo",
|
||
|
np.nan,
|
||
|
np.nan,
|
||
|
np.nan,
|
||
|
]
|
||
|
)
|
||
|
|
||
|
assert isinstance(rs, Series)
|
||
|
tm.assert_almost_equal(rs, xp)
|
||
|
|
||
|
def test_len(self):
|
||
|
values = Series(["foo", "fooo", "fooooo", np.nan, "fooooooo"])
|
||
|
|
||
|
result = values.str.len()
|
||
|
exp = values.map(lambda x: len(x) if notna(x) else np.nan)
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
# mixed
|
||
|
mixed = Series(
|
||
|
[
|
||
|
"a_b",
|
||
|
np.nan,
|
||
|
"asdf_cas_asdf",
|
||
|
True,
|
||
|
datetime.today(),
|
||
|
"foo",
|
||
|
None,
|
||
|
1,
|
||
|
2.0,
|
||
|
]
|
||
|
)
|
||
|
|
||
|
rs = Series(mixed).str.len()
|
||
|
xp = Series([3, np.nan, 13, np.nan, np.nan, 3, np.nan, np.nan, np.nan])
|
||
|
|
||
|
assert isinstance(rs, Series)
|
||
|
tm.assert_almost_equal(rs, xp)
|
||
|
|
||
|
def test_findall(self):
|
||
|
values = Series(["fooBAD__barBAD", np.nan, "foo", "BAD"])
|
||
|
|
||
|
result = values.str.findall("BAD[_]*")
|
||
|
exp = Series([["BAD__", "BAD"], np.nan, [], ["BAD"]])
|
||
|
tm.assert_almost_equal(result, exp)
|
||
|
|
||
|
# mixed
|
||
|
mixed = Series(
|
||
|
[
|
||
|
"fooBAD__barBAD",
|
||
|
np.nan,
|
||
|
"foo",
|
||
|
True,
|
||
|
datetime.today(),
|
||
|
"BAD",
|
||
|
None,
|
||
|
1,
|
||
|
2.0,
|
||
|
]
|
||
|
)
|
||
|
|
||
|
rs = Series(mixed).str.findall("BAD[_]*")
|
||
|
xp = Series(
|
||
|
[
|
||
|
["BAD__", "BAD"],
|
||
|
np.nan,
|
||
|
[],
|
||
|
np.nan,
|
||
|
np.nan,
|
||
|
["BAD"],
|
||
|
np.nan,
|
||
|
np.nan,
|
||
|
np.nan,
|
||
|
]
|
||
|
)
|
||
|
|
||
|
assert isinstance(rs, Series)
|
||
|
tm.assert_almost_equal(rs, xp)
|
||
|
|
||
|
def test_find(self):
|
||
|
values = Series(["ABCDEFG", "BCDEFEF", "DEFGHIJEF", "EFGHEF", "XXXX"])
|
||
|
result = values.str.find("EF")
|
||
|
tm.assert_series_equal(result, Series([4, 3, 1, 0, -1]))
|
||
|
expected = np.array([v.find("EF") for v in values.values], dtype=np.int64)
|
||
|
tm.assert_numpy_array_equal(result.values, expected)
|
||
|
|
||
|
result = values.str.rfind("EF")
|
||
|
tm.assert_series_equal(result, Series([4, 5, 7, 4, -1]))
|
||
|
expected = np.array([v.rfind("EF") for v in values.values], dtype=np.int64)
|
||
|
tm.assert_numpy_array_equal(result.values, expected)
|
||
|
|
||
|
result = values.str.find("EF", 3)
|
||
|
tm.assert_series_equal(result, Series([4, 3, 7, 4, -1]))
|
||
|
expected = np.array([v.find("EF", 3) for v in values.values], dtype=np.int64)
|
||
|
tm.assert_numpy_array_equal(result.values, expected)
|
||
|
|
||
|
result = values.str.rfind("EF", 3)
|
||
|
tm.assert_series_equal(result, Series([4, 5, 7, 4, -1]))
|
||
|
expected = np.array([v.rfind("EF", 3) for v in values.values], dtype=np.int64)
|
||
|
tm.assert_numpy_array_equal(result.values, expected)
|
||
|
|
||
|
result = values.str.find("EF", 3, 6)
|
||
|
tm.assert_series_equal(result, Series([4, 3, -1, 4, -1]))
|
||
|
expected = np.array([v.find("EF", 3, 6) for v in values.values], dtype=np.int64)
|
||
|
tm.assert_numpy_array_equal(result.values, expected)
|
||
|
|
||
|
result = values.str.rfind("EF", 3, 6)
|
||
|
tm.assert_series_equal(result, Series([4, 3, -1, 4, -1]))
|
||
|
expected = np.array(
|
||
|
[v.rfind("EF", 3, 6) for v in values.values], dtype=np.int64
|
||
|
)
|
||
|
tm.assert_numpy_array_equal(result.values, expected)
|
||
|
|
||
|
with pytest.raises(TypeError, match="expected a string object, not int"):
|
||
|
result = values.str.find(0)
|
||
|
|
||
|
with pytest.raises(TypeError, match="expected a string object, not int"):
|
||
|
result = values.str.rfind(0)
|
||
|
|
||
|
def test_find_nan(self):
|
||
|
values = Series(["ABCDEFG", np.nan, "DEFGHIJEF", np.nan, "XXXX"])
|
||
|
result = values.str.find("EF")
|
||
|
tm.assert_series_equal(result, Series([4, np.nan, 1, np.nan, -1]))
|
||
|
|
||
|
result = values.str.rfind("EF")
|
||
|
tm.assert_series_equal(result, Series([4, np.nan, 7, np.nan, -1]))
|
||
|
|
||
|
result = values.str.find("EF", 3)
|
||
|
tm.assert_series_equal(result, Series([4, np.nan, 7, np.nan, -1]))
|
||
|
|
||
|
result = values.str.rfind("EF", 3)
|
||
|
tm.assert_series_equal(result, Series([4, np.nan, 7, np.nan, -1]))
|
||
|
|
||
|
result = values.str.find("EF", 3, 6)
|
||
|
tm.assert_series_equal(result, Series([4, np.nan, -1, np.nan, -1]))
|
||
|
|
||
|
result = values.str.rfind("EF", 3, 6)
|
||
|
tm.assert_series_equal(result, Series([4, np.nan, -1, np.nan, -1]))
|
||
|
|
||
|
def test_index(self):
|
||
|
def _check(result, expected):
|
||
|
if isinstance(result, Series):
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
else:
|
||
|
tm.assert_index_equal(result, expected)
|
||
|
|
||
|
for klass in [Series, Index]:
|
||
|
s = klass(["ABCDEFG", "BCDEFEF", "DEFGHIJEF", "EFGHEF"])
|
||
|
|
||
|
result = s.str.index("EF")
|
||
|
_check(result, klass([4, 3, 1, 0]))
|
||
|
expected = np.array([v.index("EF") for v in s.values], dtype=np.int64)
|
||
|
tm.assert_numpy_array_equal(result.values, expected)
|
||
|
|
||
|
result = s.str.rindex("EF")
|
||
|
_check(result, klass([4, 5, 7, 4]))
|
||
|
expected = np.array([v.rindex("EF") for v in s.values], dtype=np.int64)
|
||
|
tm.assert_numpy_array_equal(result.values, expected)
|
||
|
|
||
|
result = s.str.index("EF", 3)
|
||
|
_check(result, klass([4, 3, 7, 4]))
|
||
|
expected = np.array([v.index("EF", 3) for v in s.values], dtype=np.int64)
|
||
|
tm.assert_numpy_array_equal(result.values, expected)
|
||
|
|
||
|
result = s.str.rindex("EF", 3)
|
||
|
_check(result, klass([4, 5, 7, 4]))
|
||
|
expected = np.array([v.rindex("EF", 3) for v in s.values], dtype=np.int64)
|
||
|
tm.assert_numpy_array_equal(result.values, expected)
|
||
|
|
||
|
result = s.str.index("E", 4, 8)
|
||
|
_check(result, klass([4, 5, 7, 4]))
|
||
|
expected = np.array([v.index("E", 4, 8) for v in s.values], dtype=np.int64)
|
||
|
tm.assert_numpy_array_equal(result.values, expected)
|
||
|
|
||
|
result = s.str.rindex("E", 0, 5)
|
||
|
_check(result, klass([4, 3, 1, 4]))
|
||
|
expected = np.array([v.rindex("E", 0, 5) for v in s.values], dtype=np.int64)
|
||
|
tm.assert_numpy_array_equal(result.values, expected)
|
||
|
|
||
|
with pytest.raises(ValueError, match="substring not found"):
|
||
|
result = s.str.index("DE")
|
||
|
|
||
|
msg = "expected a string object, not int"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
result = s.str.index(0)
|
||
|
|
||
|
# test with nan
|
||
|
s = Series(["abcb", "ab", "bcbe", np.nan])
|
||
|
result = s.str.index("b")
|
||
|
tm.assert_series_equal(result, Series([1, 1, 0, np.nan]))
|
||
|
result = s.str.rindex("b")
|
||
|
tm.assert_series_equal(result, Series([3, 1, 2, np.nan]))
|
||
|
|
||
|
def test_pad(self):
|
||
|
values = Series(["a", "b", np.nan, "c", np.nan, "eeeeee"])
|
||
|
|
||
|
result = values.str.pad(5, side="left")
|
||
|
exp = Series([" a", " b", np.nan, " c", np.nan, "eeeeee"])
|
||
|
tm.assert_almost_equal(result, exp)
|
||
|
|
||
|
result = values.str.pad(5, side="right")
|
||
|
exp = Series(["a ", "b ", np.nan, "c ", np.nan, "eeeeee"])
|
||
|
tm.assert_almost_equal(result, exp)
|
||
|
|
||
|
result = values.str.pad(5, side="both")
|
||
|
exp = Series([" a ", " b ", np.nan, " c ", np.nan, "eeeeee"])
|
||
|
tm.assert_almost_equal(result, exp)
|
||
|
|
||
|
# mixed
|
||
|
mixed = Series(["a", np.nan, "b", True, datetime.today(), "ee", None, 1, 2.0])
|
||
|
|
||
|
rs = Series(mixed).str.pad(5, side="left")
|
||
|
xp = Series(
|
||
|
[" a", np.nan, " b", np.nan, np.nan, " ee", np.nan, np.nan, np.nan]
|
||
|
)
|
||
|
|
||
|
assert isinstance(rs, Series)
|
||
|
tm.assert_almost_equal(rs, xp)
|
||
|
|
||
|
mixed = Series(["a", np.nan, "b", True, datetime.today(), "ee", None, 1, 2.0])
|
||
|
|
||
|
rs = Series(mixed).str.pad(5, side="right")
|
||
|
xp = Series(
|
||
|
["a ", np.nan, "b ", np.nan, np.nan, "ee ", np.nan, np.nan, np.nan]
|
||
|
)
|
||
|
|
||
|
assert isinstance(rs, Series)
|
||
|
tm.assert_almost_equal(rs, xp)
|
||
|
|
||
|
mixed = Series(["a", np.nan, "b", True, datetime.today(), "ee", None, 1, 2.0])
|
||
|
|
||
|
rs = Series(mixed).str.pad(5, side="both")
|
||
|
xp = Series(
|
||
|
[" a ", np.nan, " b ", np.nan, np.nan, " ee ", np.nan, np.nan, np.nan]
|
||
|
)
|
||
|
|
||
|
assert isinstance(rs, Series)
|
||
|
tm.assert_almost_equal(rs, xp)
|
||
|
|
||
|
def test_pad_fillchar(self):
|
||
|
|
||
|
values = Series(["a", "b", np.nan, "c", np.nan, "eeeeee"])
|
||
|
|
||
|
result = values.str.pad(5, side="left", fillchar="X")
|
||
|
exp = Series(["XXXXa", "XXXXb", np.nan, "XXXXc", np.nan, "eeeeee"])
|
||
|
tm.assert_almost_equal(result, exp)
|
||
|
|
||
|
result = values.str.pad(5, side="right", fillchar="X")
|
||
|
exp = Series(["aXXXX", "bXXXX", np.nan, "cXXXX", np.nan, "eeeeee"])
|
||
|
tm.assert_almost_equal(result, exp)
|
||
|
|
||
|
result = values.str.pad(5, side="both", fillchar="X")
|
||
|
exp = Series(["XXaXX", "XXbXX", np.nan, "XXcXX", np.nan, "eeeeee"])
|
||
|
tm.assert_almost_equal(result, exp)
|
||
|
|
||
|
msg = "fillchar must be a character, not str"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
result = values.str.pad(5, fillchar="XY")
|
||
|
|
||
|
msg = "fillchar must be a character, not int"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
result = values.str.pad(5, fillchar=5)
|
||
|
|
||
|
@pytest.mark.parametrize("f", ["center", "ljust", "rjust", "zfill", "pad"])
|
||
|
def test_pad_width(self, f):
|
||
|
# see gh-13598
|
||
|
s = Series(["1", "22", "a", "bb"])
|
||
|
msg = "width must be of integer type, not*"
|
||
|
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
getattr(s.str, f)("f")
|
||
|
|
||
|
def test_translate(self):
|
||
|
def _check(result, expected):
|
||
|
if isinstance(result, Series):
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
else:
|
||
|
tm.assert_index_equal(result, expected)
|
||
|
|
||
|
for klass in [Series, Index]:
|
||
|
s = klass(["abcdefg", "abcc", "cdddfg", "cdefggg"])
|
||
|
table = str.maketrans("abc", "cde")
|
||
|
result = s.str.translate(table)
|
||
|
expected = klass(["cdedefg", "cdee", "edddfg", "edefggg"])
|
||
|
_check(result, expected)
|
||
|
|
||
|
# Series with non-string values
|
||
|
s = Series(["a", "b", "c", 1.2])
|
||
|
expected = Series(["c", "d", "e", np.nan])
|
||
|
result = s.str.translate(table)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_center_ljust_rjust(self):
|
||
|
values = Series(["a", "b", np.nan, "c", np.nan, "eeeeee"])
|
||
|
|
||
|
result = values.str.center(5)
|
||
|
exp = Series([" a ", " b ", np.nan, " c ", np.nan, "eeeeee"])
|
||
|
tm.assert_almost_equal(result, exp)
|
||
|
|
||
|
result = values.str.ljust(5)
|
||
|
exp = Series(["a ", "b ", np.nan, "c ", np.nan, "eeeeee"])
|
||
|
tm.assert_almost_equal(result, exp)
|
||
|
|
||
|
result = values.str.rjust(5)
|
||
|
exp = Series([" a", " b", np.nan, " c", np.nan, "eeeeee"])
|
||
|
tm.assert_almost_equal(result, exp)
|
||
|
|
||
|
# mixed
|
||
|
mixed = Series(
|
||
|
["a", np.nan, "b", True, datetime.today(), "c", "eee", None, 1, 2.0]
|
||
|
)
|
||
|
|
||
|
rs = Series(mixed).str.center(5)
|
||
|
xp = Series(
|
||
|
[
|
||
|
" a ",
|
||
|
np.nan,
|
||
|
" b ",
|
||
|
np.nan,
|
||
|
np.nan,
|
||
|
" c ",
|
||
|
" eee ",
|
||
|
np.nan,
|
||
|
np.nan,
|
||
|
np.nan,
|
||
|
]
|
||
|
)
|
||
|
assert isinstance(rs, Series)
|
||
|
tm.assert_almost_equal(rs, xp)
|
||
|
|
||
|
rs = Series(mixed).str.ljust(5)
|
||
|
xp = Series(
|
||
|
[
|
||
|
"a ",
|
||
|
np.nan,
|
||
|
"b ",
|
||
|
np.nan,
|
||
|
np.nan,
|
||
|
"c ",
|
||
|
"eee ",
|
||
|
np.nan,
|
||
|
np.nan,
|
||
|
np.nan,
|
||
|
]
|
||
|
)
|
||
|
assert isinstance(rs, Series)
|
||
|
tm.assert_almost_equal(rs, xp)
|
||
|
|
||
|
rs = Series(mixed).str.rjust(5)
|
||
|
xp = Series(
|
||
|
[
|
||
|
" a",
|
||
|
np.nan,
|
||
|
" b",
|
||
|
np.nan,
|
||
|
np.nan,
|
||
|
" c",
|
||
|
" eee",
|
||
|
np.nan,
|
||
|
np.nan,
|
||
|
np.nan,
|
||
|
]
|
||
|
)
|
||
|
assert isinstance(rs, Series)
|
||
|
tm.assert_almost_equal(rs, xp)
|
||
|
|
||
|
def test_center_ljust_rjust_fillchar(self):
|
||
|
values = Series(["a", "bb", "cccc", "ddddd", "eeeeee"])
|
||
|
|
||
|
result = values.str.center(5, fillchar="X")
|
||
|
expected = Series(["XXaXX", "XXbbX", "Xcccc", "ddddd", "eeeeee"])
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
expected = np.array([v.center(5, "X") for v in values.values], dtype=np.object_)
|
||
|
tm.assert_numpy_array_equal(result.values, expected)
|
||
|
|
||
|
result = values.str.ljust(5, fillchar="X")
|
||
|
expected = Series(["aXXXX", "bbXXX", "ccccX", "ddddd", "eeeeee"])
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
expected = np.array([v.ljust(5, "X") for v in values.values], dtype=np.object_)
|
||
|
tm.assert_numpy_array_equal(result.values, expected)
|
||
|
|
||
|
result = values.str.rjust(5, fillchar="X")
|
||
|
expected = Series(["XXXXa", "XXXbb", "Xcccc", "ddddd", "eeeeee"])
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
expected = np.array([v.rjust(5, "X") for v in values.values], dtype=np.object_)
|
||
|
tm.assert_numpy_array_equal(result.values, expected)
|
||
|
|
||
|
# If fillchar is not a charatter, normal str raises TypeError
|
||
|
# 'aaa'.ljust(5, 'XY')
|
||
|
# TypeError: must be char, not str
|
||
|
template = "fillchar must be a character, not {dtype}"
|
||
|
|
||
|
with pytest.raises(TypeError, match=template.format(dtype="str")):
|
||
|
values.str.center(5, fillchar="XY")
|
||
|
|
||
|
with pytest.raises(TypeError, match=template.format(dtype="str")):
|
||
|
values.str.ljust(5, fillchar="XY")
|
||
|
|
||
|
with pytest.raises(TypeError, match=template.format(dtype="str")):
|
||
|
values.str.rjust(5, fillchar="XY")
|
||
|
|
||
|
with pytest.raises(TypeError, match=template.format(dtype="int")):
|
||
|
values.str.center(5, fillchar=1)
|
||
|
|
||
|
with pytest.raises(TypeError, match=template.format(dtype="int")):
|
||
|
values.str.ljust(5, fillchar=1)
|
||
|
|
||
|
with pytest.raises(TypeError, match=template.format(dtype="int")):
|
||
|
values.str.rjust(5, fillchar=1)
|
||
|
|
||
|
def test_zfill(self):
|
||
|
values = Series(["1", "22", "aaa", "333", "45678"])
|
||
|
|
||
|
result = values.str.zfill(5)
|
||
|
expected = Series(["00001", "00022", "00aaa", "00333", "45678"])
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
expected = np.array([v.zfill(5) for v in values.values], dtype=np.object_)
|
||
|
tm.assert_numpy_array_equal(result.values, expected)
|
||
|
|
||
|
result = values.str.zfill(3)
|
||
|
expected = Series(["001", "022", "aaa", "333", "45678"])
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
expected = np.array([v.zfill(3) for v in values.values], dtype=np.object_)
|
||
|
tm.assert_numpy_array_equal(result.values, expected)
|
||
|
|
||
|
values = Series(["1", np.nan, "aaa", np.nan, "45678"])
|
||
|
result = values.str.zfill(5)
|
||
|
expected = Series(["00001", np.nan, "00aaa", np.nan, "45678"])
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_split(self):
|
||
|
values = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"])
|
||
|
|
||
|
result = values.str.split("_")
|
||
|
exp = Series([["a", "b", "c"], ["c", "d", "e"], np.nan, ["f", "g", "h"]])
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
# more than one char
|
||
|
values = Series(["a__b__c", "c__d__e", np.nan, "f__g__h"])
|
||
|
result = values.str.split("__")
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
result = values.str.split("__", expand=False)
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
# mixed
|
||
|
mixed = Series(["a_b_c", np.nan, "d_e_f", True, datetime.today(), None, 1, 2.0])
|
||
|
result = mixed.str.split("_")
|
||
|
exp = Series(
|
||
|
[
|
||
|
["a", "b", "c"],
|
||
|
np.nan,
|
||
|
["d", "e", "f"],
|
||
|
np.nan,
|
||
|
np.nan,
|
||
|
np.nan,
|
||
|
np.nan,
|
||
|
np.nan,
|
||
|
]
|
||
|
)
|
||
|
assert isinstance(result, Series)
|
||
|
tm.assert_almost_equal(result, exp)
|
||
|
|
||
|
result = mixed.str.split("_", expand=False)
|
||
|
assert isinstance(result, Series)
|
||
|
tm.assert_almost_equal(result, exp)
|
||
|
|
||
|
# regex split
|
||
|
values = Series(["a,b_c", "c_d,e", np.nan, "f,g,h"])
|
||
|
result = values.str.split("[,_]")
|
||
|
exp = Series([["a", "b", "c"], ["c", "d", "e"], np.nan, ["f", "g", "h"]])
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
def test_rsplit(self):
|
||
|
values = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"])
|
||
|
result = values.str.rsplit("_")
|
||
|
exp = Series([["a", "b", "c"], ["c", "d", "e"], np.nan, ["f", "g", "h"]])
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
# more than one char
|
||
|
values = Series(["a__b__c", "c__d__e", np.nan, "f__g__h"])
|
||
|
result = values.str.rsplit("__")
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
result = values.str.rsplit("__", expand=False)
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
# mixed
|
||
|
mixed = Series(["a_b_c", np.nan, "d_e_f", True, datetime.today(), None, 1, 2.0])
|
||
|
result = mixed.str.rsplit("_")
|
||
|
exp = Series(
|
||
|
[
|
||
|
["a", "b", "c"],
|
||
|
np.nan,
|
||
|
["d", "e", "f"],
|
||
|
np.nan,
|
||
|
np.nan,
|
||
|
np.nan,
|
||
|
np.nan,
|
||
|
np.nan,
|
||
|
]
|
||
|
)
|
||
|
assert isinstance(result, Series)
|
||
|
tm.assert_almost_equal(result, exp)
|
||
|
|
||
|
result = mixed.str.rsplit("_", expand=False)
|
||
|
assert isinstance(result, Series)
|
||
|
tm.assert_almost_equal(result, exp)
|
||
|
|
||
|
# regex split is not supported by rsplit
|
||
|
values = Series(["a,b_c", "c_d,e", np.nan, "f,g,h"])
|
||
|
result = values.str.rsplit("[,_]")
|
||
|
exp = Series([["a,b_c"], ["c_d,e"], np.nan, ["f,g,h"]])
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
# setting max number of splits, make sure it's from reverse
|
||
|
values = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"])
|
||
|
result = values.str.rsplit("_", n=1)
|
||
|
exp = Series([["a_b", "c"], ["c_d", "e"], np.nan, ["f_g", "h"]])
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
def test_split_blank_string(self):
|
||
|
# expand blank split GH 20067
|
||
|
values = Series([""], name="test")
|
||
|
result = values.str.split(expand=True)
|
||
|
exp = DataFrame([[]]) # NOTE: this is NOT an empty DataFrame
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
values = Series(["a b c", "a b", "", " "], name="test")
|
||
|
result = values.str.split(expand=True)
|
||
|
exp = DataFrame(
|
||
|
[
|
||
|
["a", "b", "c"],
|
||
|
["a", "b", np.nan],
|
||
|
[np.nan, np.nan, np.nan],
|
||
|
[np.nan, np.nan, np.nan],
|
||
|
]
|
||
|
)
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
def test_split_noargs(self):
|
||
|
# #1859
|
||
|
s = Series(["Wes McKinney", "Travis Oliphant"])
|
||
|
result = s.str.split()
|
||
|
expected = ["Travis", "Oliphant"]
|
||
|
assert result[1] == expected
|
||
|
result = s.str.rsplit()
|
||
|
assert result[1] == expected
|
||
|
|
||
|
def test_split_maxsplit(self):
|
||
|
# re.split 0, str.split -1
|
||
|
s = Series(["bd asdf jfg", "kjasdflqw asdfnfk"])
|
||
|
|
||
|
result = s.str.split(n=-1)
|
||
|
xp = s.str.split()
|
||
|
tm.assert_series_equal(result, xp)
|
||
|
|
||
|
result = s.str.split(n=0)
|
||
|
tm.assert_series_equal(result, xp)
|
||
|
|
||
|
xp = s.str.split("asdf")
|
||
|
result = s.str.split("asdf", n=0)
|
||
|
tm.assert_series_equal(result, xp)
|
||
|
|
||
|
result = s.str.split("asdf", n=-1)
|
||
|
tm.assert_series_equal(result, xp)
|
||
|
|
||
|
def test_split_no_pat_with_nonzero_n(self):
|
||
|
s = Series(["split once", "split once too!"])
|
||
|
result = s.str.split(n=1)
|
||
|
expected = Series({0: ["split", "once"], 1: ["split", "once too!"]})
|
||
|
tm.assert_series_equal(expected, result, check_index_type=False)
|
||
|
|
||
|
def test_split_to_dataframe(self):
|
||
|
s = Series(["nosplit", "alsonosplit"])
|
||
|
result = s.str.split("_", expand=True)
|
||
|
exp = DataFrame({0: Series(["nosplit", "alsonosplit"])})
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
s = Series(["some_equal_splits", "with_no_nans"])
|
||
|
result = s.str.split("_", expand=True)
|
||
|
exp = DataFrame(
|
||
|
{0: ["some", "with"], 1: ["equal", "no"], 2: ["splits", "nans"]}
|
||
|
)
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
s = Series(["some_unequal_splits", "one_of_these_things_is_not"])
|
||
|
result = s.str.split("_", expand=True)
|
||
|
exp = DataFrame(
|
||
|
{
|
||
|
0: ["some", "one"],
|
||
|
1: ["unequal", "of"],
|
||
|
2: ["splits", "these"],
|
||
|
3: [np.nan, "things"],
|
||
|
4: [np.nan, "is"],
|
||
|
5: [np.nan, "not"],
|
||
|
}
|
||
|
)
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
s = Series(["some_splits", "with_index"], index=["preserve", "me"])
|
||
|
result = s.str.split("_", expand=True)
|
||
|
exp = DataFrame(
|
||
|
{0: ["some", "with"], 1: ["splits", "index"]}, index=["preserve", "me"]
|
||
|
)
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
with pytest.raises(ValueError, match="expand must be"):
|
||
|
s.str.split("_", expand="not_a_boolean")
|
||
|
|
||
|
def test_split_to_multiindex_expand(self):
|
||
|
# https://github.com/pandas-dev/pandas/issues/23677
|
||
|
|
||
|
idx = Index(["nosplit", "alsonosplit", np.nan])
|
||
|
result = idx.str.split("_", expand=True)
|
||
|
exp = idx
|
||
|
tm.assert_index_equal(result, exp)
|
||
|
assert result.nlevels == 1
|
||
|
|
||
|
idx = Index(["some_equal_splits", "with_no_nans", np.nan, None])
|
||
|
result = idx.str.split("_", expand=True)
|
||
|
exp = MultiIndex.from_tuples(
|
||
|
[
|
||
|
("some", "equal", "splits"),
|
||
|
("with", "no", "nans"),
|
||
|
[np.nan, np.nan, np.nan],
|
||
|
[None, None, None],
|
||
|
]
|
||
|
)
|
||
|
tm.assert_index_equal(result, exp)
|
||
|
assert result.nlevels == 3
|
||
|
|
||
|
idx = Index(["some_unequal_splits", "one_of_these_things_is_not", np.nan, None])
|
||
|
result = idx.str.split("_", expand=True)
|
||
|
exp = MultiIndex.from_tuples(
|
||
|
[
|
||
|
("some", "unequal", "splits", np.nan, np.nan, np.nan),
|
||
|
("one", "of", "these", "things", "is", "not"),
|
||
|
(np.nan, np.nan, np.nan, np.nan, np.nan, np.nan),
|
||
|
(None, None, None, None, None, None),
|
||
|
]
|
||
|
)
|
||
|
tm.assert_index_equal(result, exp)
|
||
|
assert result.nlevels == 6
|
||
|
|
||
|
with pytest.raises(ValueError, match="expand must be"):
|
||
|
idx.str.split("_", expand="not_a_boolean")
|
||
|
|
||
|
def test_rsplit_to_dataframe_expand(self):
|
||
|
s = Series(["nosplit", "alsonosplit"])
|
||
|
result = s.str.rsplit("_", expand=True)
|
||
|
exp = DataFrame({0: Series(["nosplit", "alsonosplit"])})
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
s = Series(["some_equal_splits", "with_no_nans"])
|
||
|
result = s.str.rsplit("_", expand=True)
|
||
|
exp = DataFrame(
|
||
|
{0: ["some", "with"], 1: ["equal", "no"], 2: ["splits", "nans"]}
|
||
|
)
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
result = s.str.rsplit("_", expand=True, n=2)
|
||
|
exp = DataFrame(
|
||
|
{0: ["some", "with"], 1: ["equal", "no"], 2: ["splits", "nans"]}
|
||
|
)
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
result = s.str.rsplit("_", expand=True, n=1)
|
||
|
exp = DataFrame({0: ["some_equal", "with_no"], 1: ["splits", "nans"]})
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
s = Series(["some_splits", "with_index"], index=["preserve", "me"])
|
||
|
result = s.str.rsplit("_", expand=True)
|
||
|
exp = DataFrame(
|
||
|
{0: ["some", "with"], 1: ["splits", "index"]}, index=["preserve", "me"]
|
||
|
)
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
def test_rsplit_to_multiindex_expand(self):
|
||
|
idx = Index(["nosplit", "alsonosplit"])
|
||
|
result = idx.str.rsplit("_", expand=True)
|
||
|
exp = idx
|
||
|
tm.assert_index_equal(result, exp)
|
||
|
assert result.nlevels == 1
|
||
|
|
||
|
idx = Index(["some_equal_splits", "with_no_nans"])
|
||
|
result = idx.str.rsplit("_", expand=True)
|
||
|
exp = MultiIndex.from_tuples(
|
||
|
[("some", "equal", "splits"), ("with", "no", "nans")]
|
||
|
)
|
||
|
tm.assert_index_equal(result, exp)
|
||
|
assert result.nlevels == 3
|
||
|
|
||
|
idx = Index(["some_equal_splits", "with_no_nans"])
|
||
|
result = idx.str.rsplit("_", expand=True, n=1)
|
||
|
exp = MultiIndex.from_tuples([("some_equal", "splits"), ("with_no", "nans")])
|
||
|
tm.assert_index_equal(result, exp)
|
||
|
assert result.nlevels == 2
|
||
|
|
||
|
def test_split_nan_expand(self):
|
||
|
# gh-18450
|
||
|
s = Series(["foo,bar,baz", np.nan])
|
||
|
result = s.str.split(",", expand=True)
|
||
|
exp = DataFrame([["foo", "bar", "baz"], [np.nan, np.nan, np.nan]])
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
# check that these are actually np.nan and not None
|
||
|
# TODO see GH 18463
|
||
|
# tm.assert_frame_equal does not differentiate
|
||
|
assert all(np.isnan(x) for x in result.iloc[1])
|
||
|
|
||
|
def test_split_with_name(self):
|
||
|
# GH 12617
|
||
|
|
||
|
# should preserve name
|
||
|
s = Series(["a,b", "c,d"], name="xxx")
|
||
|
res = s.str.split(",")
|
||
|
exp = Series([["a", "b"], ["c", "d"]], name="xxx")
|
||
|
tm.assert_series_equal(res, exp)
|
||
|
|
||
|
res = s.str.split(",", expand=True)
|
||
|
exp = DataFrame([["a", "b"], ["c", "d"]])
|
||
|
tm.assert_frame_equal(res, exp)
|
||
|
|
||
|
idx = Index(["a,b", "c,d"], name="xxx")
|
||
|
res = idx.str.split(",")
|
||
|
exp = Index([["a", "b"], ["c", "d"]], name="xxx")
|
||
|
assert res.nlevels == 1
|
||
|
tm.assert_index_equal(res, exp)
|
||
|
|
||
|
res = idx.str.split(",", expand=True)
|
||
|
exp = MultiIndex.from_tuples([("a", "b"), ("c", "d")])
|
||
|
assert res.nlevels == 2
|
||
|
tm.assert_index_equal(res, exp)
|
||
|
|
||
|
def test_partition_series(self):
|
||
|
# https://github.com/pandas-dev/pandas/issues/23558
|
||
|
|
||
|
values = Series(["a_b_c", "c_d_e", np.nan, "f_g_h", None])
|
||
|
|
||
|
result = values.str.partition("_", expand=False)
|
||
|
exp = Series(
|
||
|
[("a", "_", "b_c"), ("c", "_", "d_e"), np.nan, ("f", "_", "g_h"), None]
|
||
|
)
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
result = values.str.rpartition("_", expand=False)
|
||
|
exp = Series(
|
||
|
[("a_b", "_", "c"), ("c_d", "_", "e"), np.nan, ("f_g", "_", "h"), None]
|
||
|
)
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
# more than one char
|
||
|
values = Series(["a__b__c", "c__d__e", np.nan, "f__g__h", None])
|
||
|
result = values.str.partition("__", expand=False)
|
||
|
exp = Series(
|
||
|
[
|
||
|
("a", "__", "b__c"),
|
||
|
("c", "__", "d__e"),
|
||
|
np.nan,
|
||
|
("f", "__", "g__h"),
|
||
|
None,
|
||
|
]
|
||
|
)
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
result = values.str.rpartition("__", expand=False)
|
||
|
exp = Series(
|
||
|
[
|
||
|
("a__b", "__", "c"),
|
||
|
("c__d", "__", "e"),
|
||
|
np.nan,
|
||
|
("f__g", "__", "h"),
|
||
|
None,
|
||
|
]
|
||
|
)
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
# None
|
||
|
values = Series(["a b c", "c d e", np.nan, "f g h", None])
|
||
|
result = values.str.partition(expand=False)
|
||
|
exp = Series(
|
||
|
[("a", " ", "b c"), ("c", " ", "d e"), np.nan, ("f", " ", "g h"), None]
|
||
|
)
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
result = values.str.rpartition(expand=False)
|
||
|
exp = Series(
|
||
|
[("a b", " ", "c"), ("c d", " ", "e"), np.nan, ("f g", " ", "h"), None]
|
||
|
)
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
# Not split
|
||
|
values = Series(["abc", "cde", np.nan, "fgh", None])
|
||
|
result = values.str.partition("_", expand=False)
|
||
|
exp = Series([("abc", "", ""), ("cde", "", ""), np.nan, ("fgh", "", ""), None])
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
result = values.str.rpartition("_", expand=False)
|
||
|
exp = Series([("", "", "abc"), ("", "", "cde"), np.nan, ("", "", "fgh"), None])
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
# unicode
|
||
|
values = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"])
|
||
|
|
||
|
result = values.str.partition("_", expand=False)
|
||
|
exp = Series([("a", "_", "b_c"), ("c", "_", "d_e"), np.nan, ("f", "_", "g_h")])
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
result = values.str.rpartition("_", expand=False)
|
||
|
exp = Series([("a_b", "_", "c"), ("c_d", "_", "e"), np.nan, ("f_g", "_", "h")])
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
# compare to standard lib
|
||
|
values = Series(["A_B_C", "B_C_D", "E_F_G", "EFGHEF"])
|
||
|
result = values.str.partition("_", expand=False).tolist()
|
||
|
assert result == [v.partition("_") for v in values]
|
||
|
result = values.str.rpartition("_", expand=False).tolist()
|
||
|
assert result == [v.rpartition("_") for v in values]
|
||
|
|
||
|
def test_partition_index(self):
|
||
|
# https://github.com/pandas-dev/pandas/issues/23558
|
||
|
|
||
|
values = Index(["a_b_c", "c_d_e", "f_g_h", np.nan, None])
|
||
|
|
||
|
result = values.str.partition("_", expand=False)
|
||
|
exp = Index(
|
||
|
np.array(
|
||
|
[("a", "_", "b_c"), ("c", "_", "d_e"), ("f", "_", "g_h"), np.nan, None],
|
||
|
dtype=object,
|
||
|
)
|
||
|
)
|
||
|
tm.assert_index_equal(result, exp)
|
||
|
assert result.nlevels == 1
|
||
|
|
||
|
result = values.str.rpartition("_", expand=False)
|
||
|
exp = Index(
|
||
|
np.array(
|
||
|
[("a_b", "_", "c"), ("c_d", "_", "e"), ("f_g", "_", "h"), np.nan, None],
|
||
|
dtype=object,
|
||
|
)
|
||
|
)
|
||
|
tm.assert_index_equal(result, exp)
|
||
|
assert result.nlevels == 1
|
||
|
|
||
|
result = values.str.partition("_")
|
||
|
exp = Index(
|
||
|
[
|
||
|
("a", "_", "b_c"),
|
||
|
("c", "_", "d_e"),
|
||
|
("f", "_", "g_h"),
|
||
|
(np.nan, np.nan, np.nan),
|
||
|
(None, None, None),
|
||
|
]
|
||
|
)
|
||
|
tm.assert_index_equal(result, exp)
|
||
|
assert isinstance(result, MultiIndex)
|
||
|
assert result.nlevels == 3
|
||
|
|
||
|
result = values.str.rpartition("_")
|
||
|
exp = Index(
|
||
|
[
|
||
|
("a_b", "_", "c"),
|
||
|
("c_d", "_", "e"),
|
||
|
("f_g", "_", "h"),
|
||
|
(np.nan, np.nan, np.nan),
|
||
|
(None, None, None),
|
||
|
]
|
||
|
)
|
||
|
tm.assert_index_equal(result, exp)
|
||
|
assert isinstance(result, MultiIndex)
|
||
|
assert result.nlevels == 3
|
||
|
|
||
|
def test_partition_to_dataframe(self):
|
||
|
# https://github.com/pandas-dev/pandas/issues/23558
|
||
|
|
||
|
values = Series(["a_b_c", "c_d_e", np.nan, "f_g_h", None])
|
||
|
result = values.str.partition("_")
|
||
|
exp = DataFrame(
|
||
|
{
|
||
|
0: ["a", "c", np.nan, "f", None],
|
||
|
1: ["_", "_", np.nan, "_", None],
|
||
|
2: ["b_c", "d_e", np.nan, "g_h", None],
|
||
|
}
|
||
|
)
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
result = values.str.rpartition("_")
|
||
|
exp = DataFrame(
|
||
|
{
|
||
|
0: ["a_b", "c_d", np.nan, "f_g", None],
|
||
|
1: ["_", "_", np.nan, "_", None],
|
||
|
2: ["c", "e", np.nan, "h", None],
|
||
|
}
|
||
|
)
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
values = Series(["a_b_c", "c_d_e", np.nan, "f_g_h", None])
|
||
|
result = values.str.partition("_", expand=True)
|
||
|
exp = DataFrame(
|
||
|
{
|
||
|
0: ["a", "c", np.nan, "f", None],
|
||
|
1: ["_", "_", np.nan, "_", None],
|
||
|
2: ["b_c", "d_e", np.nan, "g_h", None],
|
||
|
}
|
||
|
)
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
result = values.str.rpartition("_", expand=True)
|
||
|
exp = DataFrame(
|
||
|
{
|
||
|
0: ["a_b", "c_d", np.nan, "f_g", None],
|
||
|
1: ["_", "_", np.nan, "_", None],
|
||
|
2: ["c", "e", np.nan, "h", None],
|
||
|
}
|
||
|
)
|
||
|
tm.assert_frame_equal(result, exp)
|
||
|
|
||
|
def test_partition_with_name(self):
|
||
|
# GH 12617
|
||
|
|
||
|
s = Series(["a,b", "c,d"], name="xxx")
|
||
|
res = s.str.partition(",")
|
||
|
exp = DataFrame({0: ["a", "c"], 1: [",", ","], 2: ["b", "d"]})
|
||
|
tm.assert_frame_equal(res, exp)
|
||
|
|
||
|
# should preserve name
|
||
|
res = s.str.partition(",", expand=False)
|
||
|
exp = Series([("a", ",", "b"), ("c", ",", "d")], name="xxx")
|
||
|
tm.assert_series_equal(res, exp)
|
||
|
|
||
|
idx = Index(["a,b", "c,d"], name="xxx")
|
||
|
res = idx.str.partition(",")
|
||
|
exp = MultiIndex.from_tuples([("a", ",", "b"), ("c", ",", "d")])
|
||
|
assert res.nlevels == 3
|
||
|
tm.assert_index_equal(res, exp)
|
||
|
|
||
|
# should preserve name
|
||
|
res = idx.str.partition(",", expand=False)
|
||
|
exp = Index(np.array([("a", ",", "b"), ("c", ",", "d")]), name="xxx")
|
||
|
assert res.nlevels == 1
|
||
|
tm.assert_index_equal(res, exp)
|
||
|
|
||
|
def test_partition_sep_kwarg(self):
|
||
|
# GH 22676; depr kwarg "pat" in favor of "sep"
|
||
|
values = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"])
|
||
|
|
||
|
expected = values.str.partition(sep="_")
|
||
|
result = values.str.partition("_")
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
expected = values.str.rpartition(sep="_")
|
||
|
result = values.str.rpartition("_")
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
def test_pipe_failures(self):
|
||
|
# #2119
|
||
|
s = Series(["A|B|C"])
|
||
|
|
||
|
result = s.str.split("|")
|
||
|
exp = Series([["A", "B", "C"]])
|
||
|
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
result = s.str.replace("|", " ")
|
||
|
exp = Series(["A B C"])
|
||
|
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"start, stop, step, expected",
|
||
|
[
|
||
|
(2, 5, None, Series(["foo", "bar", np.nan, "baz"])),
|
||
|
(0, 3, -1, Series(["", "", np.nan, ""])),
|
||
|
(None, None, -1, Series(["owtoofaa", "owtrabaa", np.nan, "xuqzabaa"])),
|
||
|
(3, 10, 2, Series(["oto", "ato", np.nan, "aqx"])),
|
||
|
(3, 0, -1, Series(["ofa", "aba", np.nan, "aba"])),
|
||
|
],
|
||
|
)
|
||
|
def test_slice(self, start, stop, step, expected):
|
||
|
values = Series(["aafootwo", "aabartwo", np.nan, "aabazqux"])
|
||
|
result = values.str.slice(start, stop, step)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
# mixed
|
||
|
mixed = Series(
|
||
|
["aafootwo", np.nan, "aabartwo", True, datetime.today(), None, 1, 2.0]
|
||
|
)
|
||
|
|
||
|
rs = Series(mixed).str.slice(2, 5)
|
||
|
xp = Series(["foo", np.nan, "bar", np.nan, np.nan, np.nan, np.nan, np.nan])
|
||
|
|
||
|
assert isinstance(rs, Series)
|
||
|
tm.assert_almost_equal(rs, xp)
|
||
|
|
||
|
rs = Series(mixed).str.slice(2, 5, -1)
|
||
|
xp = Series(["oof", np.nan, "rab", np.nan, np.nan, np.nan, np.nan, np.nan])
|
||
|
|
||
|
def test_slice_replace(self):
|
||
|
values = Series(["short", "a bit longer", "evenlongerthanthat", "", np.nan])
|
||
|
|
||
|
exp = Series(["shrt", "a it longer", "evnlongerthanthat", "", np.nan])
|
||
|
result = values.str.slice_replace(2, 3)
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
exp = Series(["shzrt", "a zit longer", "evznlongerthanthat", "z", np.nan])
|
||
|
result = values.str.slice_replace(2, 3, "z")
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
exp = Series(["shzort", "a zbit longer", "evzenlongerthanthat", "z", np.nan])
|
||
|
result = values.str.slice_replace(2, 2, "z")
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
exp = Series(["shzort", "a zbit longer", "evzenlongerthanthat", "z", np.nan])
|
||
|
result = values.str.slice_replace(2, 1, "z")
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
exp = Series(["shorz", "a bit longez", "evenlongerthanthaz", "z", np.nan])
|
||
|
result = values.str.slice_replace(-1, None, "z")
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
exp = Series(["zrt", "zer", "zat", "z", np.nan])
|
||
|
result = values.str.slice_replace(None, -2, "z")
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
exp = Series(["shortz", "a bit znger", "evenlozerthanthat", "z", np.nan])
|
||
|
result = values.str.slice_replace(6, 8, "z")
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
exp = Series(["zrt", "a zit longer", "evenlongzerthanthat", "z", np.nan])
|
||
|
result = values.str.slice_replace(-10, 3, "z")
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
def test_strip_lstrip_rstrip(self):
|
||
|
values = Series([" aa ", " bb \n", np.nan, "cc "])
|
||
|
|
||
|
result = values.str.strip()
|
||
|
exp = Series(["aa", "bb", np.nan, "cc"])
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
result = values.str.lstrip()
|
||
|
exp = Series(["aa ", "bb \n", np.nan, "cc "])
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
result = values.str.rstrip()
|
||
|
exp = Series([" aa", " bb", np.nan, "cc"])
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
def test_strip_lstrip_rstrip_mixed(self):
|
||
|
# mixed
|
||
|
mixed = Series(
|
||
|
[" aa ", np.nan, " bb \t\n", True, datetime.today(), None, 1, 2.0]
|
||
|
)
|
||
|
|
||
|
rs = Series(mixed).str.strip()
|
||
|
xp = Series(["aa", np.nan, "bb", np.nan, np.nan, np.nan, np.nan, np.nan])
|
||
|
|
||
|
assert isinstance(rs, Series)
|
||
|
tm.assert_almost_equal(rs, xp)
|
||
|
|
||
|
rs = Series(mixed).str.lstrip()
|
||
|
xp = Series(["aa ", np.nan, "bb \t\n", np.nan, np.nan, np.nan, np.nan, np.nan])
|
||
|
|
||
|
assert isinstance(rs, Series)
|
||
|
tm.assert_almost_equal(rs, xp)
|
||
|
|
||
|
rs = Series(mixed).str.rstrip()
|
||
|
xp = Series([" aa", np.nan, " bb", np.nan, np.nan, np.nan, np.nan, np.nan])
|
||
|
|
||
|
assert isinstance(rs, Series)
|
||
|
tm.assert_almost_equal(rs, xp)
|
||
|
|
||
|
def test_strip_lstrip_rstrip_args(self):
|
||
|
values = Series(["xxABCxx", "xx BNSD", "LDFJH xx"])
|
||
|
|
||
|
rs = values.str.strip("x")
|
||
|
xp = Series(["ABC", " BNSD", "LDFJH "])
|
||
|
tm.assert_series_equal(rs, xp)
|
||
|
|
||
|
rs = values.str.lstrip("x")
|
||
|
xp = Series(["ABCxx", " BNSD", "LDFJH xx"])
|
||
|
tm.assert_series_equal(rs, xp)
|
||
|
|
||
|
rs = values.str.rstrip("x")
|
||
|
xp = Series(["xxABC", "xx BNSD", "LDFJH "])
|
||
|
tm.assert_series_equal(rs, xp)
|
||
|
|
||
|
def test_wrap(self):
|
||
|
# test values are: two words less than width, two words equal to width,
|
||
|
# two words greater than width, one word less than width, one word
|
||
|
# equal to width, one word greater than width, multiple tokens with
|
||
|
# trailing whitespace equal to width
|
||
|
values = Series(
|
||
|
[
|
||
|
"hello world",
|
||
|
"hello world!",
|
||
|
"hello world!!",
|
||
|
"abcdefabcde",
|
||
|
"abcdefabcdef",
|
||
|
"abcdefabcdefa",
|
||
|
"ab ab ab ab ",
|
||
|
"ab ab ab ab a",
|
||
|
"\t",
|
||
|
]
|
||
|
)
|
||
|
|
||
|
# expected values
|
||
|
xp = Series(
|
||
|
[
|
||
|
"hello world",
|
||
|
"hello world!",
|
||
|
"hello\nworld!!",
|
||
|
"abcdefabcde",
|
||
|
"abcdefabcdef",
|
||
|
"abcdefabcdef\na",
|
||
|
"ab ab ab ab",
|
||
|
"ab ab ab ab\na",
|
||
|
"",
|
||
|
]
|
||
|
)
|
||
|
|
||
|
rs = values.str.wrap(12, break_long_words=True)
|
||
|
tm.assert_series_equal(rs, xp)
|
||
|
|
||
|
# test with pre and post whitespace (non-unicode), NaN, and non-ascii
|
||
|
# Unicode
|
||
|
values = Series([" pre ", np.nan, "\xac\u20ac\U00008000 abadcafe"])
|
||
|
xp = Series([" pre", np.nan, "\xac\u20ac\U00008000 ab\nadcafe"])
|
||
|
rs = values.str.wrap(6)
|
||
|
tm.assert_series_equal(rs, xp)
|
||
|
|
||
|
def test_get(self):
|
||
|
values = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"])
|
||
|
|
||
|
result = values.str.split("_").str.get(1)
|
||
|
expected = Series(["b", "d", np.nan, "g"])
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
# mixed
|
||
|
mixed = Series(["a_b_c", np.nan, "c_d_e", True, datetime.today(), None, 1, 2.0])
|
||
|
|
||
|
rs = Series(mixed).str.split("_").str.get(1)
|
||
|
xp = Series(["b", np.nan, "d", np.nan, np.nan, np.nan, np.nan, np.nan])
|
||
|
|
||
|
assert isinstance(rs, Series)
|
||
|
tm.assert_almost_equal(rs, xp)
|
||
|
|
||
|
# bounds testing
|
||
|
values = Series(["1_2_3_4_5", "6_7_8_9_10", "11_12"])
|
||
|
|
||
|
# positive index
|
||
|
result = values.str.split("_").str.get(2)
|
||
|
expected = Series(["3", "8", np.nan])
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
# negative index
|
||
|
result = values.str.split("_").str.get(-3)
|
||
|
expected = Series(["3", "8", np.nan])
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_get_complex(self):
|
||
|
# GH 20671, getting value not in dict raising `KeyError`
|
||
|
values = Series([(1, 2, 3), [1, 2, 3], {1, 2, 3}, {1: "a", 2: "b", 3: "c"}])
|
||
|
|
||
|
result = values.str.get(1)
|
||
|
expected = Series([2, 2, np.nan, "a"])
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
result = values.str.get(-1)
|
||
|
expected = Series([3, 3, np.nan, np.nan])
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
@pytest.mark.parametrize("to_type", [tuple, list, np.array])
|
||
|
def test_get_complex_nested(self, to_type):
|
||
|
values = Series([to_type([to_type([1, 2])])])
|
||
|
|
||
|
result = values.str.get(0)
|
||
|
expected = Series([to_type([1, 2])])
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
result = values.str.get(1)
|
||
|
expected = Series([np.nan])
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_contains_moar(self):
|
||
|
# PR #1179
|
||
|
s = Series(["A", "B", "C", "Aaba", "Baca", "", np.nan, "CABA", "dog", "cat"])
|
||
|
|
||
|
result = s.str.contains("a")
|
||
|
expected = Series(
|
||
|
[False, False, False, True, True, False, np.nan, False, False, True]
|
||
|
)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
result = s.str.contains("a", case=False)
|
||
|
expected = Series(
|
||
|
[True, False, False, True, True, False, np.nan, True, False, True]
|
||
|
)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
result = s.str.contains("Aa")
|
||
|
expected = Series(
|
||
|
[False, False, False, True, False, False, np.nan, False, False, False]
|
||
|
)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
result = s.str.contains("ba")
|
||
|
expected = Series(
|
||
|
[False, False, False, True, False, False, np.nan, False, False, False]
|
||
|
)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
result = s.str.contains("ba", case=False)
|
||
|
expected = Series(
|
||
|
[False, False, False, True, True, False, np.nan, True, False, False]
|
||
|
)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_contains_nan(self):
|
||
|
# PR #14171
|
||
|
s = Series([np.nan, np.nan, np.nan], dtype=np.object_)
|
||
|
|
||
|
result = s.str.contains("foo", na=False)
|
||
|
expected = Series([False, False, False], dtype=np.bool_)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
result = s.str.contains("foo", na=True)
|
||
|
expected = Series([True, True, True], dtype=np.bool_)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
result = s.str.contains("foo", na="foo")
|
||
|
expected = Series(["foo", "foo", "foo"], dtype=np.object_)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
result = s.str.contains("foo")
|
||
|
expected = Series([np.nan, np.nan, np.nan], dtype=np.object_)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_replace_moar(self):
|
||
|
# PR #1179
|
||
|
s = Series(["A", "B", "C", "Aaba", "Baca", "", np.nan, "CABA", "dog", "cat"])
|
||
|
|
||
|
result = s.str.replace("A", "YYY")
|
||
|
expected = Series(
|
||
|
["YYY", "B", "C", "YYYaba", "Baca", "", np.nan, "CYYYBYYY", "dog", "cat"]
|
||
|
)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
result = s.str.replace("A", "YYY", case=False)
|
||
|
expected = Series(
|
||
|
[
|
||
|
"YYY",
|
||
|
"B",
|
||
|
"C",
|
||
|
"YYYYYYbYYY",
|
||
|
"BYYYcYYY",
|
||
|
"",
|
||
|
np.nan,
|
||
|
"CYYYBYYY",
|
||
|
"dog",
|
||
|
"cYYYt",
|
||
|
]
|
||
|
)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
result = s.str.replace("^.a|dog", "XX-XX ", case=False)
|
||
|
expected = Series(
|
||
|
[
|
||
|
"A",
|
||
|
"B",
|
||
|
"C",
|
||
|
"XX-XX ba",
|
||
|
"XX-XX ca",
|
||
|
"",
|
||
|
np.nan,
|
||
|
"XX-XX BA",
|
||
|
"XX-XX ",
|
||
|
"XX-XX t",
|
||
|
]
|
||
|
)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_string_slice_get_syntax(self):
|
||
|
s = Series(
|
||
|
[
|
||
|
"YYY",
|
||
|
"B",
|
||
|
"C",
|
||
|
"YYYYYYbYYY",
|
||
|
"BYYYcYYY",
|
||
|
np.nan,
|
||
|
"CYYYBYYY",
|
||
|
"dog",
|
||
|
"cYYYt",
|
||
|
]
|
||
|
)
|
||
|
|
||
|
result = s.str[0]
|
||
|
expected = s.str.get(0)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
result = s.str[:3]
|
||
|
expected = s.str.slice(stop=3)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
result = s.str[2::-1]
|
||
|
expected = s.str.slice(start=2, step=-1)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_string_slice_out_of_bounds(self):
|
||
|
s = Series([(1, 2), (1,), (3, 4, 5)])
|
||
|
|
||
|
result = s.str[1]
|
||
|
expected = Series([2, np.nan, 4])
|
||
|
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
s = Series(["foo", "b", "ba"])
|
||
|
result = s.str[1]
|
||
|
expected = Series(["o", np.nan, "a"])
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_match_findall_flags(self):
|
||
|
data = {
|
||
|
"Dave": "dave@google.com",
|
||
|
"Steve": "steve@gmail.com",
|
||
|
"Rob": "rob@gmail.com",
|
||
|
"Wes": np.nan,
|
||
|
}
|
||
|
data = Series(data)
|
||
|
|
||
|
pat = r"([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\.([A-Z]{2,4})"
|
||
|
|
||
|
result = data.str.extract(pat, flags=re.IGNORECASE, expand=True)
|
||
|
assert result.iloc[0].tolist() == ["dave", "google", "com"]
|
||
|
|
||
|
result = data.str.match(pat, flags=re.IGNORECASE)
|
||
|
assert result[0]
|
||
|
|
||
|
result = data.str.fullmatch(pat, flags=re.IGNORECASE)
|
||
|
assert result[0]
|
||
|
|
||
|
result = data.str.findall(pat, flags=re.IGNORECASE)
|
||
|
assert result[0][0] == ("dave", "google", "com")
|
||
|
|
||
|
result = data.str.count(pat, flags=re.IGNORECASE)
|
||
|
assert result[0] == 1
|
||
|
|
||
|
with tm.assert_produces_warning(UserWarning):
|
||
|
result = data.str.contains(pat, flags=re.IGNORECASE)
|
||
|
assert result[0]
|
||
|
|
||
|
def test_encode_decode(self):
|
||
|
base = Series(["a", "b", "a\xe4"])
|
||
|
series = base.str.encode("utf-8")
|
||
|
|
||
|
f = lambda x: x.decode("utf-8")
|
||
|
result = series.str.decode("utf-8")
|
||
|
exp = series.map(f)
|
||
|
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
def test_encode_decode_errors(self):
|
||
|
encodeBase = Series(["a", "b", "a\x9d"])
|
||
|
|
||
|
msg = (
|
||
|
r"'charmap' codec can't encode character '\\x9d' in position 1: "
|
||
|
"character maps to <undefined>"
|
||
|
)
|
||
|
with pytest.raises(UnicodeEncodeError, match=msg):
|
||
|
encodeBase.str.encode("cp1252")
|
||
|
|
||
|
f = lambda x: x.encode("cp1252", "ignore")
|
||
|
result = encodeBase.str.encode("cp1252", "ignore")
|
||
|
exp = encodeBase.map(f)
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
decodeBase = Series([b"a", b"b", b"a\x9d"])
|
||
|
|
||
|
msg = (
|
||
|
"'charmap' codec can't decode byte 0x9d in position 1: "
|
||
|
"character maps to <undefined>"
|
||
|
)
|
||
|
with pytest.raises(UnicodeDecodeError, match=msg):
|
||
|
decodeBase.str.decode("cp1252")
|
||
|
|
||
|
f = lambda x: x.decode("cp1252", "ignore")
|
||
|
result = decodeBase.str.decode("cp1252", "ignore")
|
||
|
exp = decodeBase.map(f)
|
||
|
|
||
|
tm.assert_series_equal(result, exp)
|
||
|
|
||
|
def test_normalize(self):
|
||
|
values = ["ABC", "ABC", "123", np.nan, "アイエ"]
|
||
|
s = Series(values, index=["a", "b", "c", "d", "e"])
|
||
|
|
||
|
normed = ["ABC", "ABC", "123", np.nan, "アイエ"]
|
||
|
expected = Series(normed, index=["a", "b", "c", "d", "e"])
|
||
|
|
||
|
result = s.str.normalize("NFKC")
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
expected = Series(
|
||
|
["ABC", "ABC", "123", np.nan, "アイエ"], index=["a", "b", "c", "d", "e"]
|
||
|
)
|
||
|
|
||
|
result = s.str.normalize("NFC")
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
with pytest.raises(ValueError, match="invalid normalization form"):
|
||
|
s.str.normalize("xxx")
|
||
|
|
||
|
s = Index(["ABC", "123", "アイエ"])
|
||
|
expected = Index(["ABC", "123", "アイエ"])
|
||
|
result = s.str.normalize("NFKC")
|
||
|
tm.assert_index_equal(result, expected)
|
||
|
|
||
|
def test_index_str_accessor_visibility(self):
|
||
|
from pandas.core.strings import StringMethods
|
||
|
|
||
|
cases = [
|
||
|
(["a", "b"], "string"),
|
||
|
(["a", "b", 1], "mixed-integer"),
|
||
|
(["a", "b", 1.3], "mixed"),
|
||
|
(["a", "b", 1.3, 1], "mixed-integer"),
|
||
|
(["aa", datetime(2011, 1, 1)], "mixed"),
|
||
|
]
|
||
|
for values, tp in cases:
|
||
|
idx = Index(values)
|
||
|
assert isinstance(Series(values).str, StringMethods)
|
||
|
assert isinstance(idx.str, StringMethods)
|
||
|
assert idx.inferred_type == tp
|
||
|
|
||
|
for values, tp in cases:
|
||
|
idx = Index(values)
|
||
|
assert isinstance(Series(values).str, StringMethods)
|
||
|
assert isinstance(idx.str, StringMethods)
|
||
|
assert idx.inferred_type == tp
|
||
|
|
||
|
cases = [
|
||
|
([1, np.nan], "floating"),
|
||
|
([datetime(2011, 1, 1)], "datetime64"),
|
||
|
([timedelta(1)], "timedelta64"),
|
||
|
]
|
||
|
for values, tp in cases:
|
||
|
idx = Index(values)
|
||
|
message = "Can only use .str accessor with string values"
|
||
|
with pytest.raises(AttributeError, match=message):
|
||
|
Series(values).str
|
||
|
with pytest.raises(AttributeError, match=message):
|
||
|
idx.str
|
||
|
assert idx.inferred_type == tp
|
||
|
|
||
|
# MultiIndex has mixed dtype, but not allow to use accessor
|
||
|
idx = MultiIndex.from_tuples([("a", "b"), ("a", "b")])
|
||
|
assert idx.inferred_type == "mixed"
|
||
|
message = "Can only use .str accessor with Index, not MultiIndex"
|
||
|
with pytest.raises(AttributeError, match=message):
|
||
|
idx.str
|
||
|
|
||
|
def test_str_accessor_no_new_attributes(self):
|
||
|
# https://github.com/pandas-dev/pandas/issues/10673
|
||
|
s = Series(list("aabbcde"))
|
||
|
with pytest.raises(AttributeError, match="You cannot add any new attribute"):
|
||
|
s.str.xlabel = "a"
|
||
|
|
||
|
def test_method_on_bytes(self):
|
||
|
lhs = Series(np.array(list("abc"), "S1").astype(object))
|
||
|
rhs = Series(np.array(list("def"), "S1").astype(object))
|
||
|
with pytest.raises(TypeError, match="Cannot use .str.cat with values of.*"):
|
||
|
lhs.str.cat(rhs)
|
||
|
|
||
|
def test_casefold(self):
|
||
|
# GH25405
|
||
|
expected = Series(["ss", np.nan, "case", "ssd"])
|
||
|
s = Series(["ß", np.nan, "case", "ßd"])
|
||
|
result = s.str.casefold()
|
||
|
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_string_array(any_string_method):
|
||
|
method_name, args, kwargs = any_string_method
|
||
|
if method_name == "decode":
|
||
|
pytest.skip("decode requires bytes.")
|
||
|
|
||
|
data = ["a", "bb", np.nan, "ccc"]
|
||
|
a = Series(data, dtype=object)
|
||
|
b = Series(data, dtype="string")
|
||
|
|
||
|
expected = getattr(a.str, method_name)(*args, **kwargs)
|
||
|
result = getattr(b.str, method_name)(*args, **kwargs)
|
||
|
|
||
|
if isinstance(expected, Series):
|
||
|
if expected.dtype == "object" and lib.is_string_array(
|
||
|
expected.dropna().values,
|
||
|
):
|
||
|
assert result.dtype == "string"
|
||
|
result = result.astype(object)
|
||
|
|
||
|
elif expected.dtype == "object" and lib.is_bool_array(
|
||
|
expected.values, skipna=True
|
||
|
):
|
||
|
assert result.dtype == "boolean"
|
||
|
result = result.astype(object)
|
||
|
|
||
|
elif expected.dtype == "bool":
|
||
|
assert result.dtype == "boolean"
|
||
|
result = result.astype("bool")
|
||
|
|
||
|
elif expected.dtype == "float" and expected.isna().any():
|
||
|
assert result.dtype == "Int64"
|
||
|
result = result.astype("float")
|
||
|
|
||
|
elif isinstance(expected, DataFrame):
|
||
|
columns = expected.select_dtypes(include="object").columns
|
||
|
assert all(result[columns].dtypes == "string")
|
||
|
result[columns] = result[columns].astype(object)
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"method,expected",
|
||
|
[
|
||
|
("count", [2, None]),
|
||
|
("find", [0, None]),
|
||
|
("index", [0, None]),
|
||
|
("rindex", [2, None]),
|
||
|
],
|
||
|
)
|
||
|
def test_string_array_numeric_integer_array(method, expected):
|
||
|
s = Series(["aba", None], dtype="string")
|
||
|
result = getattr(s.str, method)("a")
|
||
|
expected = Series(expected, dtype="Int64")
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"method,expected",
|
||
|
[
|
||
|
("isdigit", [False, None, True]),
|
||
|
("isalpha", [True, None, False]),
|
||
|
("isalnum", [True, None, True]),
|
||
|
("isdigit", [False, None, True]),
|
||
|
],
|
||
|
)
|
||
|
def test_string_array_boolean_array(method, expected):
|
||
|
s = Series(["a", None, "1"], dtype="string")
|
||
|
result = getattr(s.str, method)()
|
||
|
expected = Series(expected, dtype="boolean")
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_string_array_extract():
|
||
|
# https://github.com/pandas-dev/pandas/issues/30969
|
||
|
# Only expand=False & multiple groups was failing
|
||
|
a = Series(["a1", "b2", "cc"], dtype="string")
|
||
|
b = Series(["a1", "b2", "cc"], dtype="object")
|
||
|
pat = r"(\w)(\d)"
|
||
|
|
||
|
result = a.str.extract(pat, expand=False)
|
||
|
expected = b.str.extract(pat, expand=False)
|
||
|
assert all(result.dtypes == "string")
|
||
|
|
||
|
result = result.astype(object)
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("klass", [tuple, list, np.array, pd.Series, pd.Index])
|
||
|
def test_cat_different_classes(klass):
|
||
|
# https://github.com/pandas-dev/pandas/issues/33425
|
||
|
s = pd.Series(["a", "b", "c"])
|
||
|
result = s.str.cat(klass(["x", "y", "z"]))
|
||
|
expected = pd.Series(["ax", "by", "cz"])
|
||
|
tm.assert_series_equal(result, expected)
|