Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
246 lines
8.7 KiB
246 lines
8.7 KiB
4 years ago
|
from datetime import datetime
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
import pandas as pd
|
||
|
from pandas import NaT, Series, Timestamp
|
||
|
import pandas._testing as tm
|
||
|
from pandas.core.internals.blocks import IntBlock
|
||
|
|
||
|
|
||
|
class TestSeriesInternals:
|
||
|
|
||
|
# GH 10265
|
||
|
def test_convert(self):
|
||
|
# Tests: All to nans, coerce, true
|
||
|
# Test coercion returns correct type
|
||
|
s = Series(["a", "b", "c"])
|
||
|
results = s._convert(datetime=True, coerce=True)
|
||
|
expected = Series([NaT] * 3)
|
||
|
tm.assert_series_equal(results, expected)
|
||
|
|
||
|
results = s._convert(numeric=True, coerce=True)
|
||
|
expected = Series([np.nan] * 3)
|
||
|
tm.assert_series_equal(results, expected)
|
||
|
|
||
|
expected = Series([NaT] * 3, dtype=np.dtype("m8[ns]"))
|
||
|
results = s._convert(timedelta=True, coerce=True)
|
||
|
tm.assert_series_equal(results, expected)
|
||
|
|
||
|
dt = datetime(2001, 1, 1, 0, 0)
|
||
|
td = dt - datetime(2000, 1, 1, 0, 0)
|
||
|
|
||
|
# Test coercion with mixed types
|
||
|
s = Series(["a", "3.1415", dt, td])
|
||
|
results = s._convert(datetime=True, coerce=True)
|
||
|
expected = Series([NaT, NaT, dt, NaT])
|
||
|
tm.assert_series_equal(results, expected)
|
||
|
|
||
|
results = s._convert(numeric=True, coerce=True)
|
||
|
expected = Series([np.nan, 3.1415, np.nan, np.nan])
|
||
|
tm.assert_series_equal(results, expected)
|
||
|
|
||
|
results = s._convert(timedelta=True, coerce=True)
|
||
|
expected = Series([NaT, NaT, NaT, td], dtype=np.dtype("m8[ns]"))
|
||
|
tm.assert_series_equal(results, expected)
|
||
|
|
||
|
# Test standard conversion returns original
|
||
|
results = s._convert(datetime=True)
|
||
|
tm.assert_series_equal(results, s)
|
||
|
results = s._convert(numeric=True)
|
||
|
expected = Series([np.nan, 3.1415, np.nan, np.nan])
|
||
|
tm.assert_series_equal(results, expected)
|
||
|
results = s._convert(timedelta=True)
|
||
|
tm.assert_series_equal(results, s)
|
||
|
|
||
|
# test pass-through and non-conversion when other types selected
|
||
|
s = Series(["1.0", "2.0", "3.0"])
|
||
|
results = s._convert(datetime=True, numeric=True, timedelta=True)
|
||
|
expected = Series([1.0, 2.0, 3.0])
|
||
|
tm.assert_series_equal(results, expected)
|
||
|
results = s._convert(True, False, True)
|
||
|
tm.assert_series_equal(results, s)
|
||
|
|
||
|
s = Series([datetime(2001, 1, 1, 0, 0), datetime(2001, 1, 1, 0, 0)], dtype="O")
|
||
|
results = s._convert(datetime=True, numeric=True, timedelta=True)
|
||
|
expected = Series([datetime(2001, 1, 1, 0, 0), datetime(2001, 1, 1, 0, 0)])
|
||
|
tm.assert_series_equal(results, expected)
|
||
|
results = s._convert(datetime=False, numeric=True, timedelta=True)
|
||
|
tm.assert_series_equal(results, s)
|
||
|
|
||
|
td = datetime(2001, 1, 1, 0, 0) - datetime(2000, 1, 1, 0, 0)
|
||
|
s = Series([td, td], dtype="O")
|
||
|
results = s._convert(datetime=True, numeric=True, timedelta=True)
|
||
|
expected = Series([td, td])
|
||
|
tm.assert_series_equal(results, expected)
|
||
|
results = s._convert(True, True, False)
|
||
|
tm.assert_series_equal(results, s)
|
||
|
|
||
|
s = Series([1.0, 2, 3], index=["a", "b", "c"])
|
||
|
result = s._convert(numeric=True)
|
||
|
tm.assert_series_equal(result, s)
|
||
|
|
||
|
# force numeric conversion
|
||
|
r = s.copy().astype("O")
|
||
|
r["a"] = "1"
|
||
|
result = r._convert(numeric=True)
|
||
|
tm.assert_series_equal(result, s)
|
||
|
|
||
|
r = s.copy().astype("O")
|
||
|
r["a"] = "1."
|
||
|
result = r._convert(numeric=True)
|
||
|
tm.assert_series_equal(result, s)
|
||
|
|
||
|
r = s.copy().astype("O")
|
||
|
r["a"] = "garbled"
|
||
|
result = r._convert(numeric=True)
|
||
|
expected = s.copy()
|
||
|
expected["a"] = np.nan
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
# GH 4119, not converting a mixed type (e.g.floats and object)
|
||
|
s = Series([1, "na", 3, 4])
|
||
|
result = s._convert(datetime=True, numeric=True)
|
||
|
expected = Series([1, np.nan, 3, 4])
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
s = Series([1, "", 3, 4])
|
||
|
result = s._convert(datetime=True, numeric=True)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
# dates
|
||
|
s = Series(
|
||
|
[
|
||
|
datetime(2001, 1, 1, 0, 0),
|
||
|
datetime(2001, 1, 2, 0, 0),
|
||
|
datetime(2001, 1, 3, 0, 0),
|
||
|
]
|
||
|
)
|
||
|
s2 = Series(
|
||
|
[
|
||
|
datetime(2001, 1, 1, 0, 0),
|
||
|
datetime(2001, 1, 2, 0, 0),
|
||
|
datetime(2001, 1, 3, 0, 0),
|
||
|
"foo",
|
||
|
1.0,
|
||
|
1,
|
||
|
Timestamp("20010104"),
|
||
|
"20010105",
|
||
|
],
|
||
|
dtype="O",
|
||
|
)
|
||
|
|
||
|
result = s._convert(datetime=True)
|
||
|
expected = Series(
|
||
|
[Timestamp("20010101"), Timestamp("20010102"), Timestamp("20010103")],
|
||
|
dtype="M8[ns]",
|
||
|
)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
result = s._convert(datetime=True, coerce=True)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
expected = Series(
|
||
|
[
|
||
|
Timestamp("20010101"),
|
||
|
Timestamp("20010102"),
|
||
|
Timestamp("20010103"),
|
||
|
NaT,
|
||
|
NaT,
|
||
|
NaT,
|
||
|
Timestamp("20010104"),
|
||
|
Timestamp("20010105"),
|
||
|
],
|
||
|
dtype="M8[ns]",
|
||
|
)
|
||
|
result = s2._convert(datetime=True, numeric=False, timedelta=False, coerce=True)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
result = s2._convert(datetime=True, coerce=True)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
s = Series(["foo", "bar", 1, 1.0], dtype="O")
|
||
|
result = s._convert(datetime=True, coerce=True)
|
||
|
expected = Series([NaT] * 2 + [Timestamp(1)] * 2)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
# preserver if non-object
|
||
|
s = Series([1], dtype="float32")
|
||
|
result = s._convert(datetime=True, coerce=True)
|
||
|
tm.assert_series_equal(result, s)
|
||
|
|
||
|
# FIXME: dont leave commented-out
|
||
|
# r = s.copy()
|
||
|
# r[0] = np.nan
|
||
|
# result = r._convert(convert_dates=True,convert_numeric=False)
|
||
|
# assert result.dtype == 'M8[ns]'
|
||
|
|
||
|
# dateutil parses some single letters into today's value as a date
|
||
|
expected = Series([NaT])
|
||
|
for x in "abcdefghijklmnopqrstuvwxyz":
|
||
|
s = Series([x])
|
||
|
result = s._convert(datetime=True, coerce=True)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
s = Series([x.upper()])
|
||
|
result = s._convert(datetime=True, coerce=True)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_convert_no_arg_error(self):
|
||
|
s = Series(["1.0", "2"])
|
||
|
msg = r"At least one of datetime, numeric or timedelta must be True\."
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
s._convert()
|
||
|
|
||
|
def test_convert_preserve_bool(self):
|
||
|
s = Series([1, True, 3, 5], dtype=object)
|
||
|
r = s._convert(datetime=True, numeric=True)
|
||
|
e = Series([1, 1, 3, 5], dtype="i8")
|
||
|
tm.assert_series_equal(r, e)
|
||
|
|
||
|
def test_convert_preserve_all_bool(self):
|
||
|
s = Series([False, True, False, False], dtype=object)
|
||
|
r = s._convert(datetime=True, numeric=True)
|
||
|
e = Series([False, True, False, False], dtype=bool)
|
||
|
tm.assert_series_equal(r, e)
|
||
|
|
||
|
def test_constructor_no_pandas_array(self):
|
||
|
ser = pd.Series([1, 2, 3])
|
||
|
result = pd.Series(ser.array)
|
||
|
tm.assert_series_equal(ser, result)
|
||
|
assert isinstance(result._mgr.blocks[0], IntBlock)
|
||
|
|
||
|
def test_astype_no_pandas_dtype(self):
|
||
|
# https://github.com/pandas-dev/pandas/pull/24866
|
||
|
ser = pd.Series([1, 2], dtype="int64")
|
||
|
# Don't have PandasDtype in the public API, so we use `.array.dtype`,
|
||
|
# which is a PandasDtype.
|
||
|
result = ser.astype(ser.array.dtype)
|
||
|
tm.assert_series_equal(result, ser)
|
||
|
|
||
|
def test_from_array(self):
|
||
|
result = pd.Series(pd.array(["1H", "2H"], dtype="timedelta64[ns]"))
|
||
|
assert result._mgr.blocks[0].is_extension is False
|
||
|
|
||
|
result = pd.Series(pd.array(["2015"], dtype="datetime64[ns]"))
|
||
|
assert result._mgr.blocks[0].is_extension is False
|
||
|
|
||
|
def test_from_list_dtype(self):
|
||
|
result = pd.Series(["1H", "2H"], dtype="timedelta64[ns]")
|
||
|
assert result._mgr.blocks[0].is_extension is False
|
||
|
|
||
|
result = pd.Series(["2015"], dtype="datetime64[ns]")
|
||
|
assert result._mgr.blocks[0].is_extension is False
|
||
|
|
||
|
|
||
|
def test_hasnans_uncached_for_series():
|
||
|
# GH#19700
|
||
|
idx = pd.Index([0, 1])
|
||
|
assert idx.hasnans is False
|
||
|
assert "hasnans" in idx._cache
|
||
|
ser = idx.to_series()
|
||
|
assert ser.hasnans is False
|
||
|
assert not hasattr(ser, "_cache")
|
||
|
ser.iloc[-1] = np.nan
|
||
|
assert ser.hasnans is True
|
||
|
assert Series.hasnans.__doc__ == pd.Index.hasnans.__doc__
|