1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/venv/lib/python3.9/site-packages/pandas/tests/series/test_analytics.py

204 lines
6.8 KiB

import operator
import numpy as np
import pytest
import pandas.util._test_decorators as td
import pandas as pd
from pandas import DataFrame, Series
import pandas._testing as tm
class TestSeriesAnalytics:
def test_prod_numpy16_bug(self):
s = Series([1.0, 1.0, 1.0], index=range(3))
result = s.prod()
assert not isinstance(result, Series)
def test_matmul(self):
# matmul test is for GH #10259
a = Series(np.random.randn(4), index=["p", "q", "r", "s"])
b = DataFrame(
np.random.randn(3, 4), index=["1", "2", "3"], columns=["p", "q", "r", "s"]
).T
# Series @ DataFrame -> Series
result = operator.matmul(a, b)
expected = Series(np.dot(a.values, b.values), index=["1", "2", "3"])
tm.assert_series_equal(result, expected)
# DataFrame @ Series -> Series
result = operator.matmul(b.T, a)
expected = Series(np.dot(b.T.values, a.T.values), index=["1", "2", "3"])
tm.assert_series_equal(result, expected)
# Series @ Series -> scalar
result = operator.matmul(a, a)
expected = np.dot(a.values, a.values)
tm.assert_almost_equal(result, expected)
# GH 21530
# vector (1D np.array) @ Series (__rmatmul__)
result = operator.matmul(a.values, a)
expected = np.dot(a.values, a.values)
tm.assert_almost_equal(result, expected)
# GH 21530
# vector (1D list) @ Series (__rmatmul__)
result = operator.matmul(a.values.tolist(), a)
expected = np.dot(a.values, a.values)
tm.assert_almost_equal(result, expected)
# GH 21530
# matrix (2D np.array) @ Series (__rmatmul__)
result = operator.matmul(b.T.values, a)
expected = np.dot(b.T.values, a.values)
tm.assert_almost_equal(result, expected)
# GH 21530
# matrix (2D nested lists) @ Series (__rmatmul__)
result = operator.matmul(b.T.values.tolist(), a)
expected = np.dot(b.T.values, a.values)
tm.assert_almost_equal(result, expected)
# mixed dtype DataFrame @ Series
a["p"] = int(a.p)
result = operator.matmul(b.T, a)
expected = Series(np.dot(b.T.values, a.T.values), index=["1", "2", "3"])
tm.assert_series_equal(result, expected)
# different dtypes DataFrame @ Series
a = a.astype(int)
result = operator.matmul(b.T, a)
expected = Series(np.dot(b.T.values, a.T.values), index=["1", "2", "3"])
tm.assert_series_equal(result, expected)
msg = r"Dot product shape mismatch, \(4,\) vs \(3,\)"
# exception raised is of type Exception
with pytest.raises(Exception, match=msg):
a.dot(a.values[:3])
msg = "matrices are not aligned"
with pytest.raises(ValueError, match=msg):
a.dot(b.T)
def test_ptp(self):
# GH21614
N = 1000
arr = np.random.randn(N)
ser = Series(arr)
assert np.ptp(ser) == np.ptp(arr)
def test_repeat(self):
s = Series(np.random.randn(3), index=["a", "b", "c"])
reps = s.repeat(5)
exp = Series(s.values.repeat(5), index=s.index.values.repeat(5))
tm.assert_series_equal(reps, exp)
to_rep = [2, 3, 4]
reps = s.repeat(to_rep)
exp = Series(s.values.repeat(to_rep), index=s.index.values.repeat(to_rep))
tm.assert_series_equal(reps, exp)
def test_numpy_repeat(self):
s = Series(np.arange(3), name="x")
expected = Series(s.values.repeat(2), name="x", index=s.index.values.repeat(2))
tm.assert_series_equal(np.repeat(s, 2), expected)
msg = "the 'axis' parameter is not supported"
with pytest.raises(ValueError, match=msg):
np.repeat(s, 2, axis=0)
def test_is_monotonic(self):
s = Series(np.random.randint(0, 10, size=1000))
assert not s.is_monotonic
s = Series(np.arange(1000))
assert s.is_monotonic is True
assert s.is_monotonic_increasing is True
s = Series(np.arange(1000, 0, -1))
assert s.is_monotonic_decreasing is True
s = Series(pd.date_range("20130101", periods=10))
assert s.is_monotonic is True
assert s.is_monotonic_increasing is True
s = Series(list(reversed(s.tolist())))
assert s.is_monotonic is False
assert s.is_monotonic_decreasing is True
@pytest.mark.parametrize("func", [np.any, np.all])
@pytest.mark.parametrize("kwargs", [dict(keepdims=True), dict(out=object())])
@td.skip_if_np_lt("1.15")
def test_validate_any_all_out_keepdims_raises(self, kwargs, func):
s = pd.Series([1, 2])
param = list(kwargs)[0]
name = func.__name__
msg = (
f"the '{param}' parameter is not "
"supported in the pandas "
fr"implementation of {name}\(\)"
)
with pytest.raises(ValueError, match=msg):
func(s, **kwargs)
@td.skip_if_np_lt("1.15")
def test_validate_sum_initial(self):
s = pd.Series([1, 2])
msg = (
r"the 'initial' parameter is not "
r"supported in the pandas "
r"implementation of sum\(\)"
)
with pytest.raises(ValueError, match=msg):
np.sum(s, initial=10)
def test_validate_median_initial(self):
s = pd.Series([1, 2])
msg = (
r"the 'overwrite_input' parameter is not "
r"supported in the pandas "
r"implementation of median\(\)"
)
with pytest.raises(ValueError, match=msg):
# It seems like np.median doesn't dispatch, so we use the
# method instead of the ufunc.
s.median(overwrite_input=True)
@td.skip_if_np_lt("1.15")
def test_validate_stat_keepdims(self):
s = pd.Series([1, 2])
msg = (
r"the 'keepdims' parameter is not "
r"supported in the pandas "
r"implementation of sum\(\)"
)
with pytest.raises(ValueError, match=msg):
np.sum(s, keepdims=True)
def test_td64_summation_overflow(self):
# GH 9442
s = pd.Series(pd.date_range("20130101", periods=100000, freq="H"))
s[0] += pd.Timedelta("1s 1ms")
# mean
result = (s - s.min()).mean()
expected = pd.Timedelta((pd.TimedeltaIndex((s - s.min())).asi8 / len(s)).sum())
# the computation is converted to float so
# might be some loss of precision
assert np.allclose(result.value / 1000, expected.value / 1000)
# sum
msg = "overflow in timedelta operation"
with pytest.raises(ValueError, match=msg):
(s - s.min()).sum()
s1 = s[0:10000]
with pytest.raises(ValueError, match=msg):
(s1 - s1.min()).sum()
s2 = s[0:1000]
(s2 - s2.min()).sum()