Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
103 lines
3.1 KiB
103 lines
3.1 KiB
4 years ago
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
from pandas import DataFrame, date_range, read_csv, read_parquet
|
||
|
import pandas._testing as tm
|
||
|
from pandas.util import _test_decorators as td
|
||
|
|
||
|
df1 = DataFrame(
|
||
|
{
|
||
|
"int": [1, 3],
|
||
|
"float": [2.0, np.nan],
|
||
|
"str": ["t", "s"],
|
||
|
"dt": date_range("2018-06-18", periods=2),
|
||
|
}
|
||
|
)
|
||
|
# the ignore on the following line accounts for to_csv returning Optional(str)
|
||
|
# in general, but always str in the case we give no filename
|
||
|
text = df1.to_csv(index=False).encode() # type: ignore
|
||
|
|
||
|
|
||
|
@pytest.fixture
|
||
|
def cleared_fs():
|
||
|
fsspec = pytest.importorskip("fsspec")
|
||
|
|
||
|
memfs = fsspec.filesystem("memory")
|
||
|
yield memfs
|
||
|
memfs.store.clear()
|
||
|
|
||
|
|
||
|
def test_read_csv(cleared_fs):
|
||
|
from fsspec.implementations.memory import MemoryFile
|
||
|
|
||
|
cleared_fs.store["test/test.csv"] = MemoryFile(data=text)
|
||
|
df2 = read_csv("memory://test/test.csv", parse_dates=["dt"])
|
||
|
|
||
|
tm.assert_frame_equal(df1, df2)
|
||
|
|
||
|
|
||
|
def test_reasonable_error(monkeypatch, cleared_fs):
|
||
|
from fsspec import registry
|
||
|
from fsspec.registry import known_implementations
|
||
|
|
||
|
registry.target.clear()
|
||
|
with pytest.raises(ValueError) as e:
|
||
|
read_csv("nosuchprotocol://test/test.csv")
|
||
|
assert "nosuchprotocol" in str(e.value)
|
||
|
err_mgs = "test error messgae"
|
||
|
monkeypatch.setitem(
|
||
|
known_implementations,
|
||
|
"couldexist",
|
||
|
{"class": "unimportable.CouldExist", "err": err_mgs},
|
||
|
)
|
||
|
with pytest.raises(ImportError) as e:
|
||
|
read_csv("couldexist://test/test.csv")
|
||
|
assert err_mgs in str(e.value)
|
||
|
|
||
|
|
||
|
def test_to_csv(cleared_fs):
|
||
|
df1.to_csv("memory://test/test.csv", index=True)
|
||
|
df2 = read_csv("memory://test/test.csv", parse_dates=["dt"], index_col=0)
|
||
|
|
||
|
tm.assert_frame_equal(df1, df2)
|
||
|
|
||
|
|
||
|
@td.skip_if_no("fastparquet")
|
||
|
def test_to_parquet_new_file(monkeypatch, cleared_fs):
|
||
|
"""Regression test for writing to a not-yet-existent GCS Parquet file."""
|
||
|
df1.to_parquet(
|
||
|
"memory://test/test.csv", index=True, engine="fastparquet", compression=None
|
||
|
)
|
||
|
|
||
|
|
||
|
@td.skip_if_no("s3fs")
|
||
|
def test_from_s3_csv(s3_resource, tips_file):
|
||
|
tm.assert_equal(read_csv("s3://pandas-test/tips.csv"), read_csv(tips_file))
|
||
|
# the following are decompressed by pandas, not fsspec
|
||
|
tm.assert_equal(read_csv("s3://pandas-test/tips.csv.gz"), read_csv(tips_file))
|
||
|
tm.assert_equal(read_csv("s3://pandas-test/tips.csv.bz2"), read_csv(tips_file))
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("protocol", ["s3", "s3a", "s3n"])
|
||
|
@td.skip_if_no("s3fs")
|
||
|
def test_s3_protocols(s3_resource, tips_file, protocol):
|
||
|
tm.assert_equal(
|
||
|
read_csv("%s://pandas-test/tips.csv" % protocol), read_csv(tips_file)
|
||
|
)
|
||
|
|
||
|
|
||
|
@td.skip_if_no("s3fs")
|
||
|
@td.skip_if_no("fastparquet")
|
||
|
def test_s3_parquet(s3_resource):
|
||
|
fn = "s3://pandas-test/test.parquet"
|
||
|
df1.to_parquet(fn, index=False, engine="fastparquet", compression=None)
|
||
|
df2 = read_parquet(fn, engine="fastparquet")
|
||
|
tm.assert_equal(df1, df2)
|
||
|
|
||
|
|
||
|
@td.skip_if_installed("fsspec")
|
||
|
def test_not_present_exception():
|
||
|
with pytest.raises(ImportError) as e:
|
||
|
read_csv("memory://test/test.csv")
|
||
|
assert "fsspec library is required" in str(e.value)
|