Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
261 lines
8.3 KiB
261 lines
8.3 KiB
4 years ago
|
import numpy as np
|
||
|
|
||
|
import pandas as pd
|
||
|
import pandas._testing as tm
|
||
|
|
||
|
|
||
|
class TestIndexingCallable:
|
||
|
def test_frame_loc_callable(self):
|
||
|
# GH 11485
|
||
|
df = pd.DataFrame({"A": [1, 2, 3, 4], "B": list("aabb"), "C": [1, 2, 3, 4]})
|
||
|
# iloc cannot use boolean Series (see GH3635)
|
||
|
|
||
|
# return bool indexer
|
||
|
res = df.loc[lambda x: x.A > 2]
|
||
|
tm.assert_frame_equal(res, df.loc[df.A > 2])
|
||
|
|
||
|
res = df.loc[lambda x: x.A > 2]
|
||
|
tm.assert_frame_equal(res, df.loc[df.A > 2])
|
||
|
|
||
|
res = df.loc[
|
||
|
lambda x: x.A > 2,
|
||
|
] # noqa: E231
|
||
|
tm.assert_frame_equal(res, df.loc[df.A > 2,]) # noqa: E231
|
||
|
|
||
|
res = df.loc[
|
||
|
lambda x: x.A > 2,
|
||
|
] # noqa: E231
|
||
|
tm.assert_frame_equal(res, df.loc[df.A > 2,]) # noqa: E231
|
||
|
|
||
|
res = df.loc[lambda x: x.B == "b", :]
|
||
|
tm.assert_frame_equal(res, df.loc[df.B == "b", :])
|
||
|
|
||
|
res = df.loc[lambda x: x.B == "b", :]
|
||
|
tm.assert_frame_equal(res, df.loc[df.B == "b", :])
|
||
|
|
||
|
res = df.loc[lambda x: x.A > 2, lambda x: x.columns == "B"]
|
||
|
tm.assert_frame_equal(res, df.loc[df.A > 2, [False, True, False]])
|
||
|
|
||
|
res = df.loc[lambda x: x.A > 2, lambda x: x.columns == "B"]
|
||
|
tm.assert_frame_equal(res, df.loc[df.A > 2, [False, True, False]])
|
||
|
|
||
|
res = df.loc[lambda x: x.A > 2, lambda x: "B"]
|
||
|
tm.assert_series_equal(res, df.loc[df.A > 2, "B"])
|
||
|
|
||
|
res = df.loc[lambda x: x.A > 2, lambda x: "B"]
|
||
|
tm.assert_series_equal(res, df.loc[df.A > 2, "B"])
|
||
|
|
||
|
res = df.loc[lambda x: x.A > 2, lambda x: ["A", "B"]]
|
||
|
tm.assert_frame_equal(res, df.loc[df.A > 2, ["A", "B"]])
|
||
|
|
||
|
res = df.loc[lambda x: x.A > 2, lambda x: ["A", "B"]]
|
||
|
tm.assert_frame_equal(res, df.loc[df.A > 2, ["A", "B"]])
|
||
|
|
||
|
res = df.loc[lambda x: x.A == 2, lambda x: ["A", "B"]]
|
||
|
tm.assert_frame_equal(res, df.loc[df.A == 2, ["A", "B"]])
|
||
|
|
||
|
res = df.loc[lambda x: x.A == 2, lambda x: ["A", "B"]]
|
||
|
tm.assert_frame_equal(res, df.loc[df.A == 2, ["A", "B"]])
|
||
|
|
||
|
# scalar
|
||
|
res = df.loc[lambda x: 1, lambda x: "A"]
|
||
|
assert res == df.loc[1, "A"]
|
||
|
|
||
|
res = df.loc[lambda x: 1, lambda x: "A"]
|
||
|
assert res == df.loc[1, "A"]
|
||
|
|
||
|
def test_frame_loc_callable_mixture(self):
|
||
|
# GH 11485
|
||
|
df = pd.DataFrame({"A": [1, 2, 3, 4], "B": list("aabb"), "C": [1, 2, 3, 4]})
|
||
|
|
||
|
res = df.loc[lambda x: x.A > 2, ["A", "B"]]
|
||
|
tm.assert_frame_equal(res, df.loc[df.A > 2, ["A", "B"]])
|
||
|
|
||
|
res = df.loc[lambda x: x.A > 2, ["A", "B"]]
|
||
|
tm.assert_frame_equal(res, df.loc[df.A > 2, ["A", "B"]])
|
||
|
|
||
|
res = df.loc[[2, 3], lambda x: ["A", "B"]]
|
||
|
tm.assert_frame_equal(res, df.loc[[2, 3], ["A", "B"]])
|
||
|
|
||
|
res = df.loc[[2, 3], lambda x: ["A", "B"]]
|
||
|
tm.assert_frame_equal(res, df.loc[[2, 3], ["A", "B"]])
|
||
|
|
||
|
res = df.loc[3, lambda x: ["A", "B"]]
|
||
|
tm.assert_series_equal(res, df.loc[3, ["A", "B"]])
|
||
|
|
||
|
res = df.loc[3, lambda x: ["A", "B"]]
|
||
|
tm.assert_series_equal(res, df.loc[3, ["A", "B"]])
|
||
|
|
||
|
def test_frame_loc_callable_labels(self):
|
||
|
# GH 11485
|
||
|
df = pd.DataFrame({"X": [1, 2, 3, 4], "Y": list("aabb")}, index=list("ABCD"))
|
||
|
|
||
|
# return label
|
||
|
res = df.loc[lambda x: ["A", "C"]]
|
||
|
tm.assert_frame_equal(res, df.loc[["A", "C"]])
|
||
|
|
||
|
res = df.loc[
|
||
|
lambda x: ["A", "C"],
|
||
|
] # noqa: E231
|
||
|
tm.assert_frame_equal(res, df.loc[["A", "C"],]) # noqa: E231
|
||
|
|
||
|
res = df.loc[lambda x: ["A", "C"], :]
|
||
|
tm.assert_frame_equal(res, df.loc[["A", "C"], :])
|
||
|
|
||
|
res = df.loc[lambda x: ["A", "C"], lambda x: "X"]
|
||
|
tm.assert_series_equal(res, df.loc[["A", "C"], "X"])
|
||
|
|
||
|
res = df.loc[lambda x: ["A", "C"], lambda x: ["X"]]
|
||
|
tm.assert_frame_equal(res, df.loc[["A", "C"], ["X"]])
|
||
|
|
||
|
# mixture
|
||
|
res = df.loc[["A", "C"], lambda x: "X"]
|
||
|
tm.assert_series_equal(res, df.loc[["A", "C"], "X"])
|
||
|
|
||
|
res = df.loc[["A", "C"], lambda x: ["X"]]
|
||
|
tm.assert_frame_equal(res, df.loc[["A", "C"], ["X"]])
|
||
|
|
||
|
res = df.loc[lambda x: ["A", "C"], "X"]
|
||
|
tm.assert_series_equal(res, df.loc[["A", "C"], "X"])
|
||
|
|
||
|
res = df.loc[lambda x: ["A", "C"], ["X"]]
|
||
|
tm.assert_frame_equal(res, df.loc[["A", "C"], ["X"]])
|
||
|
|
||
|
def test_frame_loc_callable_setitem(self):
|
||
|
# GH 11485
|
||
|
df = pd.DataFrame({"X": [1, 2, 3, 4], "Y": list("aabb")}, index=list("ABCD"))
|
||
|
|
||
|
# return label
|
||
|
res = df.copy()
|
||
|
res.loc[lambda x: ["A", "C"]] = -20
|
||
|
exp = df.copy()
|
||
|
exp.loc[["A", "C"]] = -20
|
||
|
tm.assert_frame_equal(res, exp)
|
||
|
|
||
|
res = df.copy()
|
||
|
res.loc[lambda x: ["A", "C"], :] = 20
|
||
|
exp = df.copy()
|
||
|
exp.loc[["A", "C"], :] = 20
|
||
|
tm.assert_frame_equal(res, exp)
|
||
|
|
||
|
res = df.copy()
|
||
|
res.loc[lambda x: ["A", "C"], lambda x: "X"] = -1
|
||
|
exp = df.copy()
|
||
|
exp.loc[["A", "C"], "X"] = -1
|
||
|
tm.assert_frame_equal(res, exp)
|
||
|
|
||
|
res = df.copy()
|
||
|
res.loc[lambda x: ["A", "C"], lambda x: ["X"]] = [5, 10]
|
||
|
exp = df.copy()
|
||
|
exp.loc[["A", "C"], ["X"]] = [5, 10]
|
||
|
tm.assert_frame_equal(res, exp)
|
||
|
|
||
|
# mixture
|
||
|
res = df.copy()
|
||
|
res.loc[["A", "C"], lambda x: "X"] = np.array([-1, -2])
|
||
|
exp = df.copy()
|
||
|
exp.loc[["A", "C"], "X"] = np.array([-1, -2])
|
||
|
tm.assert_frame_equal(res, exp)
|
||
|
|
||
|
res = df.copy()
|
||
|
res.loc[["A", "C"], lambda x: ["X"]] = 10
|
||
|
exp = df.copy()
|
||
|
exp.loc[["A", "C"], ["X"]] = 10
|
||
|
tm.assert_frame_equal(res, exp)
|
||
|
|
||
|
res = df.copy()
|
||
|
res.loc[lambda x: ["A", "C"], "X"] = -2
|
||
|
exp = df.copy()
|
||
|
exp.loc[["A", "C"], "X"] = -2
|
||
|
tm.assert_frame_equal(res, exp)
|
||
|
|
||
|
res = df.copy()
|
||
|
res.loc[lambda x: ["A", "C"], ["X"]] = -4
|
||
|
exp = df.copy()
|
||
|
exp.loc[["A", "C"], ["X"]] = -4
|
||
|
tm.assert_frame_equal(res, exp)
|
||
|
|
||
|
def test_frame_iloc_callable(self):
|
||
|
# GH 11485
|
||
|
df = pd.DataFrame({"X": [1, 2, 3, 4], "Y": list("aabb")}, index=list("ABCD"))
|
||
|
|
||
|
# return location
|
||
|
res = df.iloc[lambda x: [1, 3]]
|
||
|
tm.assert_frame_equal(res, df.iloc[[1, 3]])
|
||
|
|
||
|
res = df.iloc[lambda x: [1, 3], :]
|
||
|
tm.assert_frame_equal(res, df.iloc[[1, 3], :])
|
||
|
|
||
|
res = df.iloc[lambda x: [1, 3], lambda x: 0]
|
||
|
tm.assert_series_equal(res, df.iloc[[1, 3], 0])
|
||
|
|
||
|
res = df.iloc[lambda x: [1, 3], lambda x: [0]]
|
||
|
tm.assert_frame_equal(res, df.iloc[[1, 3], [0]])
|
||
|
|
||
|
# mixture
|
||
|
res = df.iloc[[1, 3], lambda x: 0]
|
||
|
tm.assert_series_equal(res, df.iloc[[1, 3], 0])
|
||
|
|
||
|
res = df.iloc[[1, 3], lambda x: [0]]
|
||
|
tm.assert_frame_equal(res, df.iloc[[1, 3], [0]])
|
||
|
|
||
|
res = df.iloc[lambda x: [1, 3], 0]
|
||
|
tm.assert_series_equal(res, df.iloc[[1, 3], 0])
|
||
|
|
||
|
res = df.iloc[lambda x: [1, 3], [0]]
|
||
|
tm.assert_frame_equal(res, df.iloc[[1, 3], [0]])
|
||
|
|
||
|
def test_frame_iloc_callable_setitem(self):
|
||
|
# GH 11485
|
||
|
df = pd.DataFrame({"X": [1, 2, 3, 4], "Y": list("aabb")}, index=list("ABCD"))
|
||
|
|
||
|
# return location
|
||
|
res = df.copy()
|
||
|
res.iloc[lambda x: [1, 3]] = 0
|
||
|
exp = df.copy()
|
||
|
exp.iloc[[1, 3]] = 0
|
||
|
tm.assert_frame_equal(res, exp)
|
||
|
|
||
|
res = df.copy()
|
||
|
res.iloc[lambda x: [1, 3], :] = -1
|
||
|
exp = df.copy()
|
||
|
exp.iloc[[1, 3], :] = -1
|
||
|
tm.assert_frame_equal(res, exp)
|
||
|
|
||
|
res = df.copy()
|
||
|
res.iloc[lambda x: [1, 3], lambda x: 0] = 5
|
||
|
exp = df.copy()
|
||
|
exp.iloc[[1, 3], 0] = 5
|
||
|
tm.assert_frame_equal(res, exp)
|
||
|
|
||
|
res = df.copy()
|
||
|
res.iloc[lambda x: [1, 3], lambda x: [0]] = 25
|
||
|
exp = df.copy()
|
||
|
exp.iloc[[1, 3], [0]] = 25
|
||
|
tm.assert_frame_equal(res, exp)
|
||
|
|
||
|
# mixture
|
||
|
res = df.copy()
|
||
|
res.iloc[[1, 3], lambda x: 0] = -3
|
||
|
exp = df.copy()
|
||
|
exp.iloc[[1, 3], 0] = -3
|
||
|
tm.assert_frame_equal(res, exp)
|
||
|
|
||
|
res = df.copy()
|
||
|
res.iloc[[1, 3], lambda x: [0]] = -5
|
||
|
exp = df.copy()
|
||
|
exp.iloc[[1, 3], [0]] = -5
|
||
|
tm.assert_frame_equal(res, exp)
|
||
|
|
||
|
res = df.copy()
|
||
|
res.iloc[lambda x: [1, 3], 0] = 10
|
||
|
exp = df.copy()
|
||
|
exp.iloc[[1, 3], 0] = 10
|
||
|
tm.assert_frame_equal(res, exp)
|
||
|
|
||
|
res = df.copy()
|
||
|
res.iloc[lambda x: [1, 3], [0]] = [-5, -5]
|
||
|
exp = df.copy()
|
||
|
exp.iloc[[1, 3], [0]] = [-5, -5]
|
||
|
tm.assert_frame_equal(res, exp)
|