1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/venv/lib/python3.9/site-packages/pandas/tests/groupby/test_pipe.py

79 lines
2.0 KiB

import numpy as np
import pandas as pd
from pandas import DataFrame, Index
import pandas._testing as tm
def test_pipe():
# Test the pipe method of DataFrameGroupBy.
# Issue #17871
random_state = np.random.RandomState(1234567890)
df = DataFrame(
{
"A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"],
"B": random_state.randn(8),
"C": random_state.randn(8),
}
)
def f(dfgb):
return dfgb.B.max() - dfgb.C.min().min()
def square(srs):
return srs ** 2
# Note that the transformations are
# GroupBy -> Series
# Series -> Series
# This then chains the GroupBy.pipe and the
# NDFrame.pipe methods
result = df.groupby("A").pipe(f).pipe(square)
index = Index(["bar", "foo"], dtype="object", name="A")
expected = pd.Series([8.99110003361, 8.17516964785], name="B", index=index)
tm.assert_series_equal(expected, result)
def test_pipe_args():
# Test passing args to the pipe method of DataFrameGroupBy.
# Issue #17871
df = pd.DataFrame(
{
"group": ["A", "A", "B", "B", "C"],
"x": [1.0, 2.0, 3.0, 2.0, 5.0],
"y": [10.0, 100.0, 1000.0, -100.0, -1000.0],
}
)
def f(dfgb, arg1):
return dfgb.filter(lambda grp: grp.y.mean() > arg1, dropna=False).groupby(
dfgb.grouper
)
def g(dfgb, arg2):
return dfgb.sum() / dfgb.sum().sum() + arg2
def h(df, arg3):
return df.x + df.y - arg3
result = df.groupby("group").pipe(f, 0).pipe(g, 10).pipe(h, 100)
# Assert the results here
index = pd.Index(["A", "B", "C"], name="group")
expected = pd.Series([-79.5160891089, -78.4839108911, -80], index=index)
tm.assert_series_equal(expected, result)
# test SeriesGroupby.pipe
ser = pd.Series([1, 1, 2, 2, 3, 3])
result = ser.groupby(ser).pipe(lambda grp: grp.sum() * grp.count())
expected = pd.Series([4, 8, 12], index=pd.Int64Index([1, 2, 3]))
tm.assert_series_equal(result, expected)