1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/venv/lib/python3.9/site-packages/pandas/tests/groupby/test_nth.py

622 lines
20 KiB

import numpy as np
import pytest
import pandas as pd
from pandas import DataFrame, Index, MultiIndex, Series, Timestamp, isna
import pandas._testing as tm
def test_first_last_nth(df):
# tests for first / last / nth
grouped = df.groupby("A")
first = grouped.first()
expected = df.loc[[1, 0], ["B", "C", "D"]]
expected.index = Index(["bar", "foo"], name="A")
expected = expected.sort_index()
tm.assert_frame_equal(first, expected)
nth = grouped.nth(0)
tm.assert_frame_equal(nth, expected)
last = grouped.last()
expected = df.loc[[5, 7], ["B", "C", "D"]]
expected.index = Index(["bar", "foo"], name="A")
tm.assert_frame_equal(last, expected)
nth = grouped.nth(-1)
tm.assert_frame_equal(nth, expected)
nth = grouped.nth(1)
expected = df.loc[[2, 3], ["B", "C", "D"]].copy()
expected.index = Index(["foo", "bar"], name="A")
expected = expected.sort_index()
tm.assert_frame_equal(nth, expected)
# it works!
grouped["B"].first()
grouped["B"].last()
grouped["B"].nth(0)
df.loc[df["A"] == "foo", "B"] = np.nan
assert isna(grouped["B"].first()["foo"])
assert isna(grouped["B"].last()["foo"])
assert isna(grouped["B"].nth(0)["foo"])
# v0.14.0 whatsnew
df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=["A", "B"])
g = df.groupby("A")
result = g.first()
expected = df.iloc[[1, 2]].set_index("A")
tm.assert_frame_equal(result, expected)
expected = df.iloc[[1, 2]].set_index("A")
result = g.nth(0, dropna="any")
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("method", ["first", "last"])
def test_first_last_with_na_object(method, nulls_fixture):
# https://github.com/pandas-dev/pandas/issues/32123
groups = pd.DataFrame({"a": [1, 1, 2, 2], "b": [1, 2, 3, nulls_fixture]}).groupby(
"a"
)
result = getattr(groups, method)()
if method == "first":
values = [1, 3]
else:
values = [2, 3]
values = np.array(values, dtype=result["b"].dtype)
idx = pd.Index([1, 2], name="a")
expected = pd.DataFrame({"b": values}, index=idx)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("index", [0, -1])
def test_nth_with_na_object(index, nulls_fixture):
# https://github.com/pandas-dev/pandas/issues/32123
groups = pd.DataFrame({"a": [1, 1, 2, 2], "b": [1, 2, 3, nulls_fixture]}).groupby(
"a"
)
result = groups.nth(index)
if index == 0:
values = [1, 3]
else:
values = [2, nulls_fixture]
values = np.array(values, dtype=result["b"].dtype)
idx = pd.Index([1, 2], name="a")
expected = pd.DataFrame({"b": values}, index=idx)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("method", ["first", "last"])
def test_first_last_with_None(method):
# https://github.com/pandas-dev/pandas/issues/32800
# None should be preserved as object dtype
df = pd.DataFrame.from_dict({"id": ["a"], "value": [None]})
groups = df.groupby("id", as_index=False)
result = getattr(groups, method)()
tm.assert_frame_equal(result, df)
def test_first_last_nth_dtypes(df_mixed_floats):
df = df_mixed_floats.copy()
df["E"] = True
df["F"] = 1
# tests for first / last / nth
grouped = df.groupby("A")
first = grouped.first()
expected = df.loc[[1, 0], ["B", "C", "D", "E", "F"]]
expected.index = Index(["bar", "foo"], name="A")
expected = expected.sort_index()
tm.assert_frame_equal(first, expected)
last = grouped.last()
expected = df.loc[[5, 7], ["B", "C", "D", "E", "F"]]
expected.index = Index(["bar", "foo"], name="A")
expected = expected.sort_index()
tm.assert_frame_equal(last, expected)
nth = grouped.nth(1)
expected = df.loc[[3, 2], ["B", "C", "D", "E", "F"]]
expected.index = Index(["bar", "foo"], name="A")
expected = expected.sort_index()
tm.assert_frame_equal(nth, expected)
# GH 2763, first/last shifting dtypes
idx = list(range(10))
idx.append(9)
s = Series(data=range(11), index=idx, name="IntCol")
assert s.dtype == "int64"
f = s.groupby(level=0).first()
assert f.dtype == "int64"
def test_first_last_nth_nan_dtype():
# GH 33591
df = pd.DataFrame({"data": ["A"], "nans": pd.Series([np.nan], dtype=object)})
grouped = df.groupby("data")
expected = df.set_index("data").nans
tm.assert_series_equal(grouped.nans.first(), expected)
tm.assert_series_equal(grouped.nans.last(), expected)
tm.assert_series_equal(grouped.nans.nth(-1), expected)
tm.assert_series_equal(grouped.nans.nth(0), expected)
def test_first_strings_timestamps():
# GH 11244
test = pd.DataFrame(
{
pd.Timestamp("2012-01-01 00:00:00"): ["a", "b"],
pd.Timestamp("2012-01-02 00:00:00"): ["c", "d"],
"name": ["e", "e"],
"aaaa": ["f", "g"],
}
)
result = test.groupby("name").first()
expected = DataFrame(
[["a", "c", "f"]],
columns=Index([Timestamp("2012-01-01"), Timestamp("2012-01-02"), "aaaa"]),
index=Index(["e"], name="name"),
)
tm.assert_frame_equal(result, expected)
def test_nth():
df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=["A", "B"])
g = df.groupby("A")
tm.assert_frame_equal(g.nth(0), df.iloc[[0, 2]].set_index("A"))
tm.assert_frame_equal(g.nth(1), df.iloc[[1]].set_index("A"))
tm.assert_frame_equal(g.nth(2), df.loc[[]].set_index("A"))
tm.assert_frame_equal(g.nth(-1), df.iloc[[1, 2]].set_index("A"))
tm.assert_frame_equal(g.nth(-2), df.iloc[[0]].set_index("A"))
tm.assert_frame_equal(g.nth(-3), df.loc[[]].set_index("A"))
tm.assert_series_equal(g.B.nth(0), df.set_index("A").B.iloc[[0, 2]])
tm.assert_series_equal(g.B.nth(1), df.set_index("A").B.iloc[[1]])
tm.assert_frame_equal(g[["B"]].nth(0), df.loc[[0, 2], ["A", "B"]].set_index("A"))
exp = df.set_index("A")
tm.assert_frame_equal(g.nth(0, dropna="any"), exp.iloc[[1, 2]])
tm.assert_frame_equal(g.nth(-1, dropna="any"), exp.iloc[[1, 2]])
exp["B"] = np.nan
tm.assert_frame_equal(g.nth(7, dropna="any"), exp.iloc[[1, 2]])
tm.assert_frame_equal(g.nth(2, dropna="any"), exp.iloc[[1, 2]])
# out of bounds, regression from 0.13.1
# GH 6621
df = DataFrame(
{
"color": {0: "green", 1: "green", 2: "red", 3: "red", 4: "red"},
"food": {0: "ham", 1: "eggs", 2: "eggs", 3: "ham", 4: "pork"},
"two": {
0: 1.5456590000000001,
1: -0.070345000000000005,
2: -2.4004539999999999,
3: 0.46206000000000003,
4: 0.52350799999999997,
},
"one": {
0: 0.56573799999999996,
1: -0.9742360000000001,
2: 1.033801,
3: -0.78543499999999999,
4: 0.70422799999999997,
},
}
).set_index(["color", "food"])
result = df.groupby(level=0, as_index=False).nth(2)
expected = df.iloc[[-1]]
tm.assert_frame_equal(result, expected)
result = df.groupby(level=0, as_index=False).nth(3)
expected = df.loc[[]]
tm.assert_frame_equal(result, expected)
# GH 7559
# from the vbench
df = DataFrame(np.random.randint(1, 10, (100, 2)), dtype="int64")
s = df[1]
g = df[0]
expected = s.groupby(g).first()
expected2 = s.groupby(g).apply(lambda x: x.iloc[0])
tm.assert_series_equal(expected2, expected, check_names=False)
assert expected.name == 1
assert expected2.name == 1
# validate first
v = s[g == 1].iloc[0]
assert expected.iloc[0] == v
assert expected2.iloc[0] == v
# this is NOT the same as .first (as sorted is default!)
# as it keeps the order in the series (and not the group order)
# related GH 7287
expected = s.groupby(g, sort=False).first()
result = s.groupby(g, sort=False).nth(0, dropna="all")
tm.assert_series_equal(result, expected)
with pytest.raises(ValueError, match="For a DataFrame groupby"):
s.groupby(g, sort=False).nth(0, dropna=True)
# doc example
df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=["A", "B"])
g = df.groupby("A")
result = g.B.nth(0, dropna="all")
expected = g.B.first()
tm.assert_series_equal(result, expected)
# test multiple nth values
df = DataFrame([[1, np.nan], [1, 3], [1, 4], [5, 6], [5, 7]], columns=["A", "B"])
g = df.groupby("A")
tm.assert_frame_equal(g.nth(0), df.iloc[[0, 3]].set_index("A"))
tm.assert_frame_equal(g.nth([0]), df.iloc[[0, 3]].set_index("A"))
tm.assert_frame_equal(g.nth([0, 1]), df.iloc[[0, 1, 3, 4]].set_index("A"))
tm.assert_frame_equal(g.nth([0, -1]), df.iloc[[0, 2, 3, 4]].set_index("A"))
tm.assert_frame_equal(g.nth([0, 1, 2]), df.iloc[[0, 1, 2, 3, 4]].set_index("A"))
tm.assert_frame_equal(g.nth([0, 1, -1]), df.iloc[[0, 1, 2, 3, 4]].set_index("A"))
tm.assert_frame_equal(g.nth([2]), df.iloc[[2]].set_index("A"))
tm.assert_frame_equal(g.nth([3, 4]), df.loc[[]].set_index("A"))
business_dates = pd.date_range(start="4/1/2014", end="6/30/2014", freq="B")
df = DataFrame(1, index=business_dates, columns=["a", "b"])
# get the first, fourth and last two business days for each month
key = [df.index.year, df.index.month]
result = df.groupby(key, as_index=False).nth([0, 3, -2, -1])
expected_dates = pd.to_datetime(
[
"2014/4/1",
"2014/4/4",
"2014/4/29",
"2014/4/30",
"2014/5/1",
"2014/5/6",
"2014/5/29",
"2014/5/30",
"2014/6/2",
"2014/6/5",
"2014/6/27",
"2014/6/30",
]
)
expected = DataFrame(1, columns=["a", "b"], index=expected_dates)
tm.assert_frame_equal(result, expected)
def test_nth_multi_index(three_group):
# PR 9090, related to issue 8979
# test nth on MultiIndex, should match .first()
grouped = three_group.groupby(["A", "B"])
result = grouped.nth(0)
expected = grouped.first()
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"data, expected_first, expected_last",
[
(
{
"id": ["A"],
"time": Timestamp("2012-02-01 14:00:00", tz="US/Central"),
"foo": [1],
},
{
"id": ["A"],
"time": Timestamp("2012-02-01 14:00:00", tz="US/Central"),
"foo": [1],
},
{
"id": ["A"],
"time": Timestamp("2012-02-01 14:00:00", tz="US/Central"),
"foo": [1],
},
),
(
{
"id": ["A", "B", "A"],
"time": [
Timestamp("2012-01-01 13:00:00", tz="America/New_York"),
Timestamp("2012-02-01 14:00:00", tz="US/Central"),
Timestamp("2012-03-01 12:00:00", tz="Europe/London"),
],
"foo": [1, 2, 3],
},
{
"id": ["A", "B"],
"time": [
Timestamp("2012-01-01 13:00:00", tz="America/New_York"),
Timestamp("2012-02-01 14:00:00", tz="US/Central"),
],
"foo": [1, 2],
},
{
"id": ["A", "B"],
"time": [
Timestamp("2012-03-01 12:00:00", tz="Europe/London"),
Timestamp("2012-02-01 14:00:00", tz="US/Central"),
],
"foo": [3, 2],
},
),
],
)
def test_first_last_tz(data, expected_first, expected_last):
# GH15884
# Test that the timezone is retained when calling first
# or last on groupby with as_index=False
df = DataFrame(data)
result = df.groupby("id", as_index=False).first()
expected = DataFrame(expected_first)
cols = ["id", "time", "foo"]
tm.assert_frame_equal(result[cols], expected[cols])
result = df.groupby("id", as_index=False)["time"].first()
tm.assert_frame_equal(result, expected[["id", "time"]])
result = df.groupby("id", as_index=False).last()
expected = DataFrame(expected_last)
cols = ["id", "time", "foo"]
tm.assert_frame_equal(result[cols], expected[cols])
result = df.groupby("id", as_index=False)["time"].last()
tm.assert_frame_equal(result, expected[["id", "time"]])
@pytest.mark.parametrize(
"method, ts, alpha",
[
["first", Timestamp("2013-01-01", tz="US/Eastern"), "a"],
["last", Timestamp("2013-01-02", tz="US/Eastern"), "b"],
],
)
def test_first_last_tz_multi_column(method, ts, alpha):
# GH 21603
category_string = pd.Series(list("abc")).astype("category")
df = pd.DataFrame(
{
"group": [1, 1, 2],
"category_string": category_string,
"datetimetz": pd.date_range("20130101", periods=3, tz="US/Eastern"),
}
)
result = getattr(df.groupby("group"), method)()
expected = pd.DataFrame(
{
"category_string": pd.Categorical(
[alpha, "c"], dtype=category_string.dtype
),
"datetimetz": [ts, Timestamp("2013-01-03", tz="US/Eastern")],
},
index=pd.Index([1, 2], name="group"),
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"values",
[
pd.array([True, False], dtype="boolean"),
pd.array([1, 2], dtype="Int64"),
pd.to_datetime(["2020-01-01", "2020-02-01"]),
pd.to_timedelta([1, 2], unit="D"),
],
)
@pytest.mark.parametrize("function", ["first", "last", "min", "max"])
def test_first_last_extension_array_keeps_dtype(values, function):
# https://github.com/pandas-dev/pandas/issues/33071
# https://github.com/pandas-dev/pandas/issues/32194
df = DataFrame({"a": [1, 2], "b": values})
grouped = df.groupby("a")
idx = Index([1, 2], name="a")
expected_series = Series(values, name="b", index=idx)
expected_frame = DataFrame({"b": values}, index=idx)
result_series = getattr(grouped["b"], function)()
tm.assert_series_equal(result_series, expected_series)
result_frame = grouped.agg({"b": function})
tm.assert_frame_equal(result_frame, expected_frame)
def test_nth_multi_index_as_expected():
# PR 9090, related to issue 8979
# test nth on MultiIndex
three_group = DataFrame(
{
"A": [
"foo",
"foo",
"foo",
"foo",
"bar",
"bar",
"bar",
"bar",
"foo",
"foo",
"foo",
],
"B": [
"one",
"one",
"one",
"two",
"one",
"one",
"one",
"two",
"two",
"two",
"one",
],
"C": [
"dull",
"dull",
"shiny",
"dull",
"dull",
"shiny",
"shiny",
"dull",
"shiny",
"shiny",
"shiny",
],
}
)
grouped = three_group.groupby(["A", "B"])
result = grouped.nth(0)
expected = DataFrame(
{"C": ["dull", "dull", "dull", "dull"]},
index=MultiIndex.from_arrays(
[["bar", "bar", "foo", "foo"], ["one", "two", "one", "two"]],
names=["A", "B"],
),
)
tm.assert_frame_equal(result, expected)
def test_groupby_head_tail():
df = DataFrame([[1, 2], [1, 4], [5, 6]], columns=["A", "B"])
g_as = df.groupby("A", as_index=True)
g_not_as = df.groupby("A", as_index=False)
# as_index= False, much easier
tm.assert_frame_equal(df.loc[[0, 2]], g_not_as.head(1))
tm.assert_frame_equal(df.loc[[1, 2]], g_not_as.tail(1))
empty_not_as = DataFrame(
columns=df.columns, index=pd.Index([], dtype=df.index.dtype)
)
empty_not_as["A"] = empty_not_as["A"].astype(df.A.dtype)
empty_not_as["B"] = empty_not_as["B"].astype(df.B.dtype)
tm.assert_frame_equal(empty_not_as, g_not_as.head(0))
tm.assert_frame_equal(empty_not_as, g_not_as.tail(0))
tm.assert_frame_equal(empty_not_as, g_not_as.head(-1))
tm.assert_frame_equal(empty_not_as, g_not_as.tail(-1))
tm.assert_frame_equal(df, g_not_as.head(7)) # contains all
tm.assert_frame_equal(df, g_not_as.tail(7))
# as_index=True, (used to be different)
df_as = df
tm.assert_frame_equal(df_as.loc[[0, 2]], g_as.head(1))
tm.assert_frame_equal(df_as.loc[[1, 2]], g_as.tail(1))
empty_as = DataFrame(index=df_as.index[:0], columns=df.columns)
empty_as["A"] = empty_not_as["A"].astype(df.A.dtype)
empty_as["B"] = empty_not_as["B"].astype(df.B.dtype)
tm.assert_frame_equal(empty_as, g_as.head(0))
tm.assert_frame_equal(empty_as, g_as.tail(0))
tm.assert_frame_equal(empty_as, g_as.head(-1))
tm.assert_frame_equal(empty_as, g_as.tail(-1))
tm.assert_frame_equal(df_as, g_as.head(7)) # contains all
tm.assert_frame_equal(df_as, g_as.tail(7))
# test with selection
tm.assert_frame_equal(g_as[[]].head(1), df_as.loc[[0, 2], []])
tm.assert_frame_equal(g_as[["A"]].head(1), df_as.loc[[0, 2], ["A"]])
tm.assert_frame_equal(g_as[["B"]].head(1), df_as.loc[[0, 2], ["B"]])
tm.assert_frame_equal(g_as[["A", "B"]].head(1), df_as.loc[[0, 2]])
tm.assert_frame_equal(g_not_as[[]].head(1), df_as.loc[[0, 2], []])
tm.assert_frame_equal(g_not_as[["A"]].head(1), df_as.loc[[0, 2], ["A"]])
tm.assert_frame_equal(g_not_as[["B"]].head(1), df_as.loc[[0, 2], ["B"]])
tm.assert_frame_equal(g_not_as[["A", "B"]].head(1), df_as.loc[[0, 2]])
def test_group_selection_cache():
# GH 12839 nth, head, and tail should return same result consistently
df = DataFrame([[1, 2], [1, 4], [5, 6]], columns=["A", "B"])
expected = df.iloc[[0, 2]].set_index("A")
g = df.groupby("A")
result1 = g.head(n=2)
result2 = g.nth(0)
tm.assert_frame_equal(result1, df)
tm.assert_frame_equal(result2, expected)
g = df.groupby("A")
result1 = g.tail(n=2)
result2 = g.nth(0)
tm.assert_frame_equal(result1, df)
tm.assert_frame_equal(result2, expected)
g = df.groupby("A")
result1 = g.nth(0)
result2 = g.head(n=2)
tm.assert_frame_equal(result1, expected)
tm.assert_frame_equal(result2, df)
g = df.groupby("A")
result1 = g.nth(0)
result2 = g.tail(n=2)
tm.assert_frame_equal(result1, expected)
tm.assert_frame_equal(result2, df)
def test_nth_empty():
# GH 16064
df = DataFrame(index=[0], columns=["a", "b", "c"])
result = df.groupby("a").nth(10)
expected = DataFrame(index=Index([], name="a"), columns=["b", "c"])
tm.assert_frame_equal(result, expected)
result = df.groupby(["a", "b"]).nth(10)
expected = DataFrame(
index=MultiIndex([[], []], [[], []], names=["a", "b"]), columns=["c"]
)
tm.assert_frame_equal(result, expected)
def test_nth_column_order():
# GH 20760
# Check that nth preserves column order
df = DataFrame(
[[1, "b", 100], [1, "a", 50], [1, "a", np.nan], [2, "c", 200], [2, "d", 150]],
columns=["A", "C", "B"],
)
result = df.groupby("A").nth(0)
expected = DataFrame(
[["b", 100.0], ["c", 200.0]], columns=["C", "B"], index=Index([1, 2], name="A")
)
tm.assert_frame_equal(result, expected)
result = df.groupby("A").nth(-1, dropna="any")
expected = DataFrame(
[["a", 50.0], ["d", 150.0]], columns=["C", "B"], index=Index([1, 2], name="A")
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("dropna", [None, "any", "all"])
def test_nth_nan_in_grouper(dropna):
# GH 26011
df = DataFrame(
[[np.nan, 0, 1], ["abc", 2, 3], [np.nan, 4, 5], ["def", 6, 7], [np.nan, 8, 9]],
columns=list("abc"),
)
result = df.groupby("a").nth(0, dropna=dropna)
expected = pd.DataFrame(
[[2, 3], [6, 7]], columns=list("bc"), index=Index(["abc", "def"], name="a")
)
tm.assert_frame_equal(result, expected)