1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/venv/lib/python3.9/site-packages/pandas/tests/generic/test_generic.py

890 lines
30 KiB

from copy import copy, deepcopy
import numpy as np
import pytest
from pandas.compat.numpy import _np_version_under1p17
from pandas.core.dtypes.common import is_scalar
import pandas as pd
from pandas import DataFrame, Series, date_range
import pandas._testing as tm
import pandas.core.common as com
# ----------------------------------------------------------------------
# Generic types test cases
class Generic:
@property
def _ndim(self):
return self._typ._AXIS_LEN
def _axes(self):
""" return the axes for my object typ """
return self._typ._AXIS_ORDERS
def _construct(self, shape, value=None, dtype=None, **kwargs):
"""
construct an object for the given shape
if value is specified use that if its a scalar
if value is an array, repeat it as needed
"""
if isinstance(shape, int):
shape = tuple([shape] * self._ndim)
if value is not None:
if is_scalar(value):
if value == "empty":
arr = None
dtype = np.float64
# remove the info axis
kwargs.pop(self._typ._info_axis_name, None)
else:
arr = np.empty(shape, dtype=dtype)
arr.fill(value)
else:
fshape = np.prod(shape)
arr = value.ravel()
new_shape = fshape / arr.shape[0]
if fshape % arr.shape[0] != 0:
raise Exception("invalid value passed in _construct")
arr = np.repeat(arr, new_shape).reshape(shape)
else:
arr = np.random.randn(*shape)
return self._typ(arr, dtype=dtype, **kwargs)
def _compare(self, result, expected):
self._comparator(result, expected)
def test_rename(self):
# single axis
idx = list("ABCD")
# relabeling values passed into self.rename
args = [
str.lower,
{x: x.lower() for x in idx},
Series({x: x.lower() for x in idx}),
]
for axis in self._axes():
kwargs = {axis: idx}
obj = self._construct(4, **kwargs)
for arg in args:
# rename a single axis
result = obj.rename(**{axis: arg})
expected = obj.copy()
setattr(expected, axis, list("abcd"))
self._compare(result, expected)
# multiple axes at once
def test_get_numeric_data(self):
n = 4
kwargs = {
self._typ._get_axis_name(i): list(range(n)) for i in range(self._ndim)
}
# get the numeric data
o = self._construct(n, **kwargs)
result = o._get_numeric_data()
self._compare(result, o)
# non-inclusion
result = o._get_bool_data()
expected = self._construct(n, value="empty", **kwargs)
self._compare(result, expected)
# get the bool data
arr = np.array([True, True, False, True])
o = self._construct(n, value=arr, **kwargs)
result = o._get_numeric_data()
self._compare(result, o)
# _get_numeric_data is includes _get_bool_data, so can't test for
# non-inclusion
def test_nonzero(self):
# GH 4633
# look at the boolean/nonzero behavior for objects
obj = self._construct(shape=4)
msg = f"The truth value of a {self._typ.__name__} is ambiguous"
with pytest.raises(ValueError, match=msg):
bool(obj == 0)
with pytest.raises(ValueError, match=msg):
bool(obj == 1)
with pytest.raises(ValueError, match=msg):
bool(obj)
obj = self._construct(shape=4, value=1)
with pytest.raises(ValueError, match=msg):
bool(obj == 0)
with pytest.raises(ValueError, match=msg):
bool(obj == 1)
with pytest.raises(ValueError, match=msg):
bool(obj)
obj = self._construct(shape=4, value=np.nan)
with pytest.raises(ValueError, match=msg):
bool(obj == 0)
with pytest.raises(ValueError, match=msg):
bool(obj == 1)
with pytest.raises(ValueError, match=msg):
bool(obj)
# empty
obj = self._construct(shape=0)
with pytest.raises(ValueError, match=msg):
bool(obj)
# invalid behaviors
obj1 = self._construct(shape=4, value=1)
obj2 = self._construct(shape=4, value=1)
with pytest.raises(ValueError, match=msg):
if obj1:
pass
with pytest.raises(ValueError, match=msg):
obj1 and obj2
with pytest.raises(ValueError, match=msg):
obj1 or obj2
with pytest.raises(ValueError, match=msg):
not obj1
def test_downcast(self):
# test close downcasting
o = self._construct(shape=4, value=9, dtype=np.int64)
result = o.copy()
result._mgr = o._mgr.downcast()
self._compare(result, o)
o = self._construct(shape=4, value=9.5)
result = o.copy()
result._mgr = o._mgr.downcast()
self._compare(result, o)
def test_constructor_compound_dtypes(self):
# see gh-5191
# Compound dtypes should raise NotImplementedError.
def f(dtype):
return self._construct(shape=3, value=1, dtype=dtype)
msg = (
"compound dtypes are not implemented "
f"in the {self._typ.__name__} constructor"
)
with pytest.raises(NotImplementedError, match=msg):
f([("A", "datetime64[h]"), ("B", "str"), ("C", "int32")])
# these work (though results may be unexpected)
f("int64")
f("float64")
f("M8[ns]")
def check_metadata(self, x, y=None):
for m in x._metadata:
v = getattr(x, m, None)
if y is None:
assert v is None
else:
assert v == getattr(y, m, None)
def test_metadata_propagation(self):
# check that the metadata matches up on the resulting ops
o = self._construct(shape=3)
o.name = "foo"
o2 = self._construct(shape=3)
o2.name = "bar"
# ----------
# preserving
# ----------
# simple ops with scalars
for op in ["__add__", "__sub__", "__truediv__", "__mul__"]:
result = getattr(o, op)(1)
self.check_metadata(o, result)
# ops with like
for op in ["__add__", "__sub__", "__truediv__", "__mul__"]:
result = getattr(o, op)(o)
self.check_metadata(o, result)
# simple boolean
for op in ["__eq__", "__le__", "__ge__"]:
v1 = getattr(o, op)(o)
self.check_metadata(o, v1)
self.check_metadata(o, v1 & v1)
self.check_metadata(o, v1 | v1)
# combine_first
result = o.combine_first(o2)
self.check_metadata(o, result)
# ---------------------------
# non-preserving (by default)
# ---------------------------
# add non-like
result = o + o2
self.check_metadata(result)
# simple boolean
for op in ["__eq__", "__le__", "__ge__"]:
# this is a name matching op
v1 = getattr(o, op)(o)
v2 = getattr(o, op)(o2)
self.check_metadata(v2)
self.check_metadata(v1 & v2)
self.check_metadata(v1 | v2)
def test_head_tail(self, index):
# GH5370
o = self._construct(shape=len(index))
axis = o._get_axis_name(0)
setattr(o, axis, index)
o.head()
self._compare(o.head(), o.iloc[:5])
self._compare(o.tail(), o.iloc[-5:])
# 0-len
self._compare(o.head(0), o.iloc[0:0])
self._compare(o.tail(0), o.iloc[0:0])
# bounded
self._compare(o.head(len(o) + 1), o)
self._compare(o.tail(len(o) + 1), o)
# neg index
self._compare(o.head(-3), o.head(len(index) - 3))
self._compare(o.tail(-3), o.tail(len(index) - 3))
def test_sample(self):
# Fixes issue: 2419
o = self._construct(shape=10)
###
# Check behavior of random_state argument
###
# Check for stability when receives seed or random state -- run 10
# times.
for test in range(10):
seed = np.random.randint(0, 100)
self._compare(
o.sample(n=4, random_state=seed), o.sample(n=4, random_state=seed)
)
self._compare(
o.sample(frac=0.7, random_state=seed),
o.sample(frac=0.7, random_state=seed),
)
self._compare(
o.sample(n=4, random_state=np.random.RandomState(test)),
o.sample(n=4, random_state=np.random.RandomState(test)),
)
self._compare(
o.sample(frac=0.7, random_state=np.random.RandomState(test)),
o.sample(frac=0.7, random_state=np.random.RandomState(test)),
)
self._compare(
o.sample(
frac=2, replace=True, random_state=np.random.RandomState(test)
),
o.sample(
frac=2, replace=True, random_state=np.random.RandomState(test)
),
)
os1, os2 = [], []
for _ in range(2):
np.random.seed(test)
os1.append(o.sample(n=4))
os2.append(o.sample(frac=0.7))
self._compare(*os1)
self._compare(*os2)
# Check for error when random_state argument invalid.
with pytest.raises(ValueError):
o.sample(random_state="astring!")
###
# Check behavior of `frac` and `N`
###
# Giving both frac and N throws error
with pytest.raises(ValueError):
o.sample(n=3, frac=0.3)
# Check that raises right error for negative lengths
with pytest.raises(ValueError):
o.sample(n=-3)
with pytest.raises(ValueError):
o.sample(frac=-0.3)
# Make sure float values of `n` give error
with pytest.raises(ValueError):
o.sample(n=3.2)
# Check lengths are right
assert len(o.sample(n=4) == 4)
assert len(o.sample(frac=0.34) == 3)
assert len(o.sample(frac=0.36) == 4)
###
# Check weights
###
# Weight length must be right
with pytest.raises(ValueError):
o.sample(n=3, weights=[0, 1])
with pytest.raises(ValueError):
bad_weights = [0.5] * 11
o.sample(n=3, weights=bad_weights)
with pytest.raises(ValueError):
bad_weight_series = Series([0, 0, 0.2])
o.sample(n=4, weights=bad_weight_series)
# Check won't accept negative weights
with pytest.raises(ValueError):
bad_weights = [-0.1] * 10
o.sample(n=3, weights=bad_weights)
# Check inf and -inf throw errors:
with pytest.raises(ValueError):
weights_with_inf = [0.1] * 10
weights_with_inf[0] = np.inf
o.sample(n=3, weights=weights_with_inf)
with pytest.raises(ValueError):
weights_with_ninf = [0.1] * 10
weights_with_ninf[0] = -np.inf
o.sample(n=3, weights=weights_with_ninf)
# All zeros raises errors
zero_weights = [0] * 10
with pytest.raises(ValueError):
o.sample(n=3, weights=zero_weights)
# All missing weights
nan_weights = [np.nan] * 10
with pytest.raises(ValueError):
o.sample(n=3, weights=nan_weights)
# Check np.nan are replaced by zeros.
weights_with_nan = [np.nan] * 10
weights_with_nan[5] = 0.5
self._compare(o.sample(n=1, axis=0, weights=weights_with_nan), o.iloc[5:6])
# Check None are also replaced by zeros.
weights_with_None = [None] * 10
weights_with_None[5] = 0.5
self._compare(o.sample(n=1, axis=0, weights=weights_with_None), o.iloc[5:6])
def test_sample_upsampling_without_replacement(self):
# GH27451
df = pd.DataFrame({"A": list("abc")})
msg = (
"Replace has to be set to `True` when "
"upsampling the population `frac` > 1."
)
with pytest.raises(ValueError, match=msg):
df.sample(frac=2, replace=False)
def test_sample_is_copy(self):
# GH-27357, GH-30784: ensure the result of sample is an actual copy and
# doesn't track the parent dataframe / doesn't give SettingWithCopy warnings
df = pd.DataFrame(np.random.randn(10, 3), columns=["a", "b", "c"])
df2 = df.sample(3)
with tm.assert_produces_warning(None):
df2["d"] = 1
def test_size_compat(self):
# GH8846
# size property should be defined
o = self._construct(shape=10)
assert o.size == np.prod(o.shape)
assert o.size == 10 ** len(o.axes)
def test_split_compat(self):
# xref GH8846
o = self._construct(shape=10)
assert len(np.array_split(o, 5)) == 5
assert len(np.array_split(o, 2)) == 2
# See gh-12301
def test_stat_unexpected_keyword(self):
obj = self._construct(5)
starwars = "Star Wars"
errmsg = "unexpected keyword"
with pytest.raises(TypeError, match=errmsg):
obj.max(epic=starwars) # stat_function
with pytest.raises(TypeError, match=errmsg):
obj.var(epic=starwars) # stat_function_ddof
with pytest.raises(TypeError, match=errmsg):
obj.sum(epic=starwars) # cum_function
with pytest.raises(TypeError, match=errmsg):
obj.any(epic=starwars) # logical_function
@pytest.mark.parametrize("func", ["sum", "cumsum", "any", "var"])
def test_api_compat(self, func):
# GH 12021
# compat for __name__, __qualname__
obj = self._construct(5)
f = getattr(obj, func)
assert f.__name__ == func
assert f.__qualname__.endswith(func)
def test_stat_non_defaults_args(self):
obj = self._construct(5)
out = np.array([0])
errmsg = "the 'out' parameter is not supported"
with pytest.raises(ValueError, match=errmsg):
obj.max(out=out) # stat_function
with pytest.raises(ValueError, match=errmsg):
obj.var(out=out) # stat_function_ddof
with pytest.raises(ValueError, match=errmsg):
obj.sum(out=out) # cum_function
with pytest.raises(ValueError, match=errmsg):
obj.any(out=out) # logical_function
def test_truncate_out_of_bounds(self):
# GH11382
# small
shape = [int(2e3)] + ([1] * (self._ndim - 1))
small = self._construct(shape, dtype="int8", value=1)
self._compare(small.truncate(), small)
self._compare(small.truncate(before=0, after=3e3), small)
self._compare(small.truncate(before=-1, after=2e3), small)
# big
shape = [int(2e6)] + ([1] * (self._ndim - 1))
big = self._construct(shape, dtype="int8", value=1)
self._compare(big.truncate(), big)
self._compare(big.truncate(before=0, after=3e6), big)
self._compare(big.truncate(before=-1, after=2e6), big)
@pytest.mark.parametrize(
"func",
[copy, deepcopy, lambda x: x.copy(deep=False), lambda x: x.copy(deep=True)],
)
@pytest.mark.parametrize("shape", [0, 1, 2])
def test_copy_and_deepcopy(self, shape, func):
# GH 15444
obj = self._construct(shape)
obj_copy = func(obj)
assert obj_copy is not obj
self._compare(obj_copy, obj)
@pytest.mark.parametrize(
"periods,fill_method,limit,exp",
[
(1, "ffill", None, [np.nan, np.nan, np.nan, 1, 1, 1.5, 0, 0]),
(1, "ffill", 1, [np.nan, np.nan, np.nan, 1, 1, 1.5, 0, np.nan]),
(1, "bfill", None, [np.nan, 0, 0, 1, 1, 1.5, np.nan, np.nan]),
(1, "bfill", 1, [np.nan, np.nan, 0, 1, 1, 1.5, np.nan, np.nan]),
(-1, "ffill", None, [np.nan, np.nan, -0.5, -0.5, -0.6, 0, 0, np.nan]),
(-1, "ffill", 1, [np.nan, np.nan, -0.5, -0.5, -0.6, 0, np.nan, np.nan]),
(-1, "bfill", None, [0, 0, -0.5, -0.5, -0.6, np.nan, np.nan, np.nan]),
(-1, "bfill", 1, [np.nan, 0, -0.5, -0.5, -0.6, np.nan, np.nan, np.nan]),
],
)
def test_pct_change(self, periods, fill_method, limit, exp):
vals = [np.nan, np.nan, 1, 2, 4, 10, np.nan, np.nan]
obj = self._typ(vals)
func = getattr(obj, "pct_change")
res = func(periods=periods, fill_method=fill_method, limit=limit)
if type(obj) is DataFrame:
tm.assert_frame_equal(res, DataFrame(exp))
else:
tm.assert_series_equal(res, Series(exp))
class TestNDFrame:
# tests that don't fit elsewhere
def test_sample(sel):
# Fixes issue: 2419
# additional specific object based tests
# A few dataframe test with degenerate weights.
easy_weight_list = [0] * 10
easy_weight_list[5] = 1
df = pd.DataFrame(
{
"col1": range(10, 20),
"col2": range(20, 30),
"colString": ["a"] * 10,
"easyweights": easy_weight_list,
}
)
sample1 = df.sample(n=1, weights="easyweights")
tm.assert_frame_equal(sample1, df.iloc[5:6])
# Ensure proper error if string given as weight for Series or
# DataFrame with axis = 1.
s = Series(range(10))
with pytest.raises(ValueError):
s.sample(n=3, weights="weight_column")
with pytest.raises(ValueError):
df.sample(n=1, weights="weight_column", axis=1)
# Check weighting key error
with pytest.raises(
KeyError, match="'String passed to weights not a valid column'"
):
df.sample(n=3, weights="not_a_real_column_name")
# Check that re-normalizes weights that don't sum to one.
weights_less_than_1 = [0] * 10
weights_less_than_1[0] = 0.5
tm.assert_frame_equal(df.sample(n=1, weights=weights_less_than_1), df.iloc[:1])
###
# Test axis argument
###
# Test axis argument
df = pd.DataFrame({"col1": range(10), "col2": ["a"] * 10})
second_column_weight = [0, 1]
tm.assert_frame_equal(
df.sample(n=1, axis=1, weights=second_column_weight), df[["col2"]]
)
# Different axis arg types
tm.assert_frame_equal(
df.sample(n=1, axis="columns", weights=second_column_weight), df[["col2"]]
)
weight = [0] * 10
weight[5] = 0.5
tm.assert_frame_equal(df.sample(n=1, axis="rows", weights=weight), df.iloc[5:6])
tm.assert_frame_equal(
df.sample(n=1, axis="index", weights=weight), df.iloc[5:6]
)
# Check out of range axis values
with pytest.raises(ValueError):
df.sample(n=1, axis=2)
with pytest.raises(ValueError):
df.sample(n=1, axis="not_a_name")
with pytest.raises(ValueError):
s = pd.Series(range(10))
s.sample(n=1, axis=1)
# Test weight length compared to correct axis
with pytest.raises(ValueError):
df.sample(n=1, axis=1, weights=[0.5] * 10)
# Check weights with axis = 1
easy_weight_list = [0] * 3
easy_weight_list[2] = 1
df = pd.DataFrame(
{"col1": range(10, 20), "col2": range(20, 30), "colString": ["a"] * 10}
)
sample1 = df.sample(n=1, axis=1, weights=easy_weight_list)
tm.assert_frame_equal(sample1, df[["colString"]])
# Test default axes
tm.assert_frame_equal(
df.sample(n=3, random_state=42), df.sample(n=3, axis=0, random_state=42)
)
# Test that function aligns weights with frame
df = DataFrame({"col1": [5, 6, 7], "col2": ["a", "b", "c"]}, index=[9, 5, 3])
s = Series([1, 0, 0], index=[3, 5, 9])
tm.assert_frame_equal(df.loc[[3]], df.sample(1, weights=s))
# Weights have index values to be dropped because not in
# sampled DataFrame
s2 = Series([0.001, 0, 10000], index=[3, 5, 10])
tm.assert_frame_equal(df.loc[[3]], df.sample(1, weights=s2))
# Weights have empty values to be filed with zeros
s3 = Series([0.01, 0], index=[3, 5])
tm.assert_frame_equal(df.loc[[3]], df.sample(1, weights=s3))
# No overlap in weight and sampled DataFrame indices
s4 = Series([1, 0], index=[1, 2])
with pytest.raises(ValueError):
df.sample(1, weights=s4)
@pytest.mark.parametrize(
"func_str,arg",
[
("np.array", [2, 3, 1, 0]),
pytest.param(
"np.random.MT19937",
3,
marks=pytest.mark.skipif(_np_version_under1p17, reason="NumPy<1.17"),
),
pytest.param(
"np.random.PCG64",
11,
marks=pytest.mark.skipif(_np_version_under1p17, reason="NumPy<1.17"),
),
],
)
def test_sample_random_state(self, func_str, arg):
# GH32503
df = pd.DataFrame({"col1": range(10, 20), "col2": range(20, 30)})
result = df.sample(n=3, random_state=eval(func_str)(arg))
expected = df.sample(n=3, random_state=com.random_state(eval(func_str)(arg)))
tm.assert_frame_equal(result, expected)
def test_squeeze(self):
# noop
for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries()]:
tm.assert_series_equal(s.squeeze(), s)
for df in [tm.makeTimeDataFrame()]:
tm.assert_frame_equal(df.squeeze(), df)
# squeezing
df = tm.makeTimeDataFrame().reindex(columns=["A"])
tm.assert_series_equal(df.squeeze(), df["A"])
# don't fail with 0 length dimensions GH11229 & GH8999
empty_series = Series([], name="five", dtype=np.float64)
empty_frame = DataFrame([empty_series])
tm.assert_series_equal(empty_series, empty_series.squeeze())
tm.assert_series_equal(empty_series, empty_frame.squeeze())
# axis argument
df = tm.makeTimeDataFrame(nper=1).iloc[:, :1]
assert df.shape == (1, 1)
tm.assert_series_equal(df.squeeze(axis=0), df.iloc[0])
tm.assert_series_equal(df.squeeze(axis="index"), df.iloc[0])
tm.assert_series_equal(df.squeeze(axis=1), df.iloc[:, 0])
tm.assert_series_equal(df.squeeze(axis="columns"), df.iloc[:, 0])
assert df.squeeze() == df.iloc[0, 0]
msg = "No axis named 2 for object type DataFrame"
with pytest.raises(ValueError, match=msg):
df.squeeze(axis=2)
msg = "No axis named x for object type DataFrame"
with pytest.raises(ValueError, match=msg):
df.squeeze(axis="x")
df = tm.makeTimeDataFrame(3)
tm.assert_frame_equal(df.squeeze(axis=0), df)
def test_numpy_squeeze(self):
s = tm.makeFloatSeries()
tm.assert_series_equal(np.squeeze(s), s)
df = tm.makeTimeDataFrame().reindex(columns=["A"])
tm.assert_series_equal(np.squeeze(df), df["A"])
def test_transpose(self):
for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries()]:
# calls implementation in pandas/core/base.py
tm.assert_series_equal(s.transpose(), s)
for df in [tm.makeTimeDataFrame()]:
tm.assert_frame_equal(df.transpose().transpose(), df)
def test_numpy_transpose(self):
msg = "the 'axes' parameter is not supported"
s = tm.makeFloatSeries()
tm.assert_series_equal(np.transpose(s), s)
with pytest.raises(ValueError, match=msg):
np.transpose(s, axes=1)
df = tm.makeTimeDataFrame()
tm.assert_frame_equal(np.transpose(np.transpose(df)), df)
with pytest.raises(ValueError, match=msg):
np.transpose(df, axes=1)
def test_take(self):
indices = [1, 5, -2, 6, 3, -1]
for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries()]:
out = s.take(indices)
expected = Series(
data=s.values.take(indices), index=s.index.take(indices), dtype=s.dtype
)
tm.assert_series_equal(out, expected)
for df in [tm.makeTimeDataFrame()]:
out = df.take(indices)
expected = DataFrame(
data=df.values.take(indices, axis=0),
index=df.index.take(indices),
columns=df.columns,
)
tm.assert_frame_equal(out, expected)
def test_take_invalid_kwargs(self):
indices = [-3, 2, 0, 1]
s = tm.makeFloatSeries()
df = tm.makeTimeDataFrame()
for obj in (s, df):
msg = r"take\(\) got an unexpected keyword argument 'foo'"
with pytest.raises(TypeError, match=msg):
obj.take(indices, foo=2)
msg = "the 'out' parameter is not supported"
with pytest.raises(ValueError, match=msg):
obj.take(indices, out=indices)
msg = "the 'mode' parameter is not supported"
with pytest.raises(ValueError, match=msg):
obj.take(indices, mode="clip")
@pytest.mark.parametrize("is_copy", [True, False])
def test_depr_take_kwarg_is_copy(self, is_copy):
# GH 27357
df = DataFrame({"A": [1, 2, 3]})
msg = (
"is_copy is deprecated and will be removed in a future version. "
"'take' always returns a copy, so there is no need to specify this."
)
with tm.assert_produces_warning(FutureWarning) as w:
df.take([0, 1], is_copy=is_copy)
assert w[0].message.args[0] == msg
s = Series([1, 2, 3])
with tm.assert_produces_warning(FutureWarning):
s.take([0, 1], is_copy=is_copy)
def test_equals(self):
# Add object dtype column with nans
index = np.random.random(10)
df1 = DataFrame(np.random.random(10), index=index, columns=["floats"])
df1["text"] = "the sky is so blue. we could use more chocolate.".split()
df1["start"] = date_range("2000-1-1", periods=10, freq="T")
df1["end"] = date_range("2000-1-1", periods=10, freq="D")
df1["diff"] = df1["end"] - df1["start"]
df1["bool"] = np.arange(10) % 3 == 0
df1.loc[::2] = np.nan
df2 = df1.copy()
assert df1["text"].equals(df2["text"])
assert df1["start"].equals(df2["start"])
assert df1["end"].equals(df2["end"])
assert df1["diff"].equals(df2["diff"])
assert df1["bool"].equals(df2["bool"])
assert df1.equals(df2)
assert not df1.equals(object)
# different dtype
different = df1.copy()
different["floats"] = different["floats"].astype("float32")
assert not df1.equals(different)
# different index
different_index = -index
different = df2.set_index(different_index)
assert not df1.equals(different)
# different columns
different = df2.copy()
different.columns = df2.columns[::-1]
assert not df1.equals(different)
# DatetimeIndex
index = pd.date_range("2000-1-1", periods=10, freq="T")
df1 = df1.set_index(index)
df2 = df1.copy()
assert df1.equals(df2)
# MultiIndex
df3 = df1.set_index(["text"], append=True)
df2 = df1.set_index(["text"], append=True)
assert df3.equals(df2)
df2 = df1.set_index(["floats"], append=True)
assert not df3.equals(df2)
# NaN in index
df3 = df1.set_index(["floats"], append=True)
df2 = df1.set_index(["floats"], append=True)
assert df3.equals(df2)
def test_pipe(self):
df = DataFrame({"A": [1, 2, 3]})
f = lambda x, y: x ** y
result = df.pipe(f, 2)
expected = DataFrame({"A": [1, 4, 9]})
tm.assert_frame_equal(result, expected)
result = df.A.pipe(f, 2)
tm.assert_series_equal(result, expected.A)
def test_pipe_tuple(self):
df = DataFrame({"A": [1, 2, 3]})
f = lambda x, y: y
result = df.pipe((f, "y"), 0)
tm.assert_frame_equal(result, df)
result = df.A.pipe((f, "y"), 0)
tm.assert_series_equal(result, df.A)
def test_pipe_tuple_error(self):
df = DataFrame({"A": [1, 2, 3]})
f = lambda x, y: y
with pytest.raises(ValueError):
df.pipe((f, "y"), x=1, y=0)
with pytest.raises(ValueError):
df.A.pipe((f, "y"), x=1, y=0)
@pytest.mark.parametrize("box", [pd.Series, pd.DataFrame])
def test_axis_classmethods(self, box):
obj = box(dtype=object)
values = box._AXIS_TO_AXIS_NUMBER.keys()
for v in values:
assert obj._get_axis_number(v) == box._get_axis_number(v)
assert obj._get_axis_name(v) == box._get_axis_name(v)
assert obj._get_block_manager_axis(v) == box._get_block_manager_axis(v)
@pytest.mark.parametrize("box", [pd.Series, pd.DataFrame])
def test_axis_names_deprecated(self, box):
# GH33637
obj = box(dtype=object)
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
obj._AXIS_NAMES
@pytest.mark.parametrize("box", [pd.Series, pd.DataFrame])
def test_axis_numbers_deprecated(self, box):
# GH33637
obj = box(dtype=object)
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
obj._AXIS_NUMBERS