1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/venv/lib/python3.9/site-packages/pandas/tests/frame/conftest.py

278 lines
8.6 KiB

from itertools import product
import numpy as np
import pytest
from pandas import DataFrame, NaT, date_range
import pandas._testing as tm
@pytest.fixture(params=product([True, False], [True, False]))
def close_open_fixture(request):
return request.param
@pytest.fixture
def float_frame_with_na():
"""
Fixture for DataFrame of floats with index of unique strings
Columns are ['A', 'B', 'C', 'D']; some entries are missing
A B C D
ABwBzA0ljw -1.128865 -0.897161 0.046603 0.274997
DJiRzmbyQF 0.728869 0.233502 0.722431 -0.890872
neMgPD5UBF 0.486072 -1.027393 -0.031553 1.449522
0yWA4n8VeX -1.937191 -1.142531 0.805215 -0.462018
3slYUbbqU1 0.153260 1.164691 1.489795 -0.545826
soujjZ0A08 NaN NaN NaN NaN
7W6NLGsjB9 NaN NaN NaN NaN
... ... ... ... ...
uhfeaNkCR1 -0.231210 -0.340472 0.244717 -0.901590
n6p7GYuBIV -0.419052 1.922721 -0.125361 -0.727717
ZhzAeY6p1y 1.234374 -1.425359 -0.827038 -0.633189
uWdPsORyUh 0.046738 -0.980445 -1.102965 0.605503
3DJA6aN590 -0.091018 -1.684734 -1.100900 0.215947
2GBPAzdbMk -2.883405 -1.021071 1.209877 1.633083
sHadBoyVHw -2.223032 -0.326384 0.258931 0.245517
[30 rows x 4 columns]
"""
df = DataFrame(tm.getSeriesData())
# set some NAs
df.iloc[5:10] = np.nan
df.iloc[15:20, -2:] = np.nan
return df
@pytest.fixture
def bool_frame_with_na():
"""
Fixture for DataFrame of booleans with index of unique strings
Columns are ['A', 'B', 'C', 'D']; some entries are missing
A B C D
zBZxY2IDGd False False False False
IhBWBMWllt False True True True
ctjdvZSR6R True False True True
AVTujptmxb False True False True
G9lrImrSWq False False False True
sFFwdIUfz2 NaN NaN NaN NaN
s15ptEJnRb NaN NaN NaN NaN
... ... ... ... ...
UW41KkDyZ4 True True False False
l9l6XkOdqV True False False False
X2MeZfzDYA False True False False
xWkIKU7vfX False True False True
QOhL6VmpGU False False False True
22PwkRJdat False True False False
kfboQ3VeIK True False True False
[30 rows x 4 columns]
"""
df = DataFrame(tm.getSeriesData()) > 0
df = df.astype(object)
# set some NAs
df.iloc[5:10] = np.nan
df.iloc[15:20, -2:] = np.nan
return df
@pytest.fixture
def float_string_frame():
"""
Fixture for DataFrame of floats and strings with index of unique strings
Columns are ['A', 'B', 'C', 'D', 'foo'].
A B C D foo
w3orJvq07g -1.594062 -1.084273 -1.252457 0.356460 bar
PeukuVdmz2 0.109855 -0.955086 -0.809485 0.409747 bar
ahp2KvwiM8 -1.533729 -0.142519 -0.154666 1.302623 bar
3WSJ7BUCGd 2.484964 0.213829 0.034778 -2.327831 bar
khdAmufk0U -0.193480 -0.743518 -0.077987 0.153646 bar
LE2DZiFlrE -0.193566 -1.343194 -0.107321 0.959978 bar
HJXSJhVn7b 0.142590 1.257603 -0.659409 -0.223844 bar
... ... ... ... ... ...
9a1Vypttgw -1.316394 1.601354 0.173596 1.213196 bar
h5d1gVFbEy 0.609475 1.106738 -0.155271 0.294630 bar
mK9LsTQG92 1.303613 0.857040 -1.019153 0.369468 bar
oOLksd9gKH 0.558219 -0.134491 -0.289869 -0.951033 bar
9jgoOjKyHg 0.058270 -0.496110 -0.413212 -0.852659 bar
jZLDHclHAO 0.096298 1.267510 0.549206 -0.005235 bar
lR0nxDp1C2 -2.119350 -0.794384 0.544118 0.145849 bar
[30 rows x 5 columns]
"""
df = DataFrame(tm.getSeriesData())
df["foo"] = "bar"
return df
@pytest.fixture
def mixed_float_frame():
"""
Fixture for DataFrame of different float types with index of unique strings
Columns are ['A', 'B', 'C', 'D'].
A B C D
GI7bbDaEZe -0.237908 -0.246225 -0.468506 0.752993
KGp9mFepzA -1.140809 -0.644046 -1.225586 0.801588
VeVYLAb1l2 -1.154013 -1.677615 0.690430 -0.003731
kmPME4WKhO 0.979578 0.998274 -0.776367 0.897607
CPyopdXTiz 0.048119 -0.257174 0.836426 0.111266
0kJZQndAj0 0.274357 -0.281135 -0.344238 0.834541
tqdwQsaHG8 -0.979716 -0.519897 0.582031 0.144710
... ... ... ... ...
7FhZTWILQj -2.906357 1.261039 -0.780273 -0.537237
4pUDPM4eGq -2.042512 -0.464382 -0.382080 1.132612
B8dUgUzwTi -1.506637 -0.364435 1.087891 0.297653
hErlVYjVv9 1.477453 -0.495515 -0.713867 1.438427
1BKN3o7YLs 0.127535 -0.349812 -0.881836 0.489827
9S4Ekn7zga 1.445518 -2.095149 0.031982 0.373204
xN1dNn6OV6 1.425017 -0.983995 -0.363281 -0.224502
[30 rows x 4 columns]
"""
df = DataFrame(tm.getSeriesData())
df.A = df.A.astype("float32")
df.B = df.B.astype("float32")
df.C = df.C.astype("float16")
df.D = df.D.astype("float64")
return df
@pytest.fixture
def mixed_int_frame():
"""
Fixture for DataFrame of different int types with index of unique strings
Columns are ['A', 'B', 'C', 'D'].
A B C D
mUrCZ67juP 0 1 2 2
rw99ACYaKS 0 1 0 0
7QsEcpaaVU 0 1 1 1
xkrimI2pcE 0 1 0 0
dz01SuzoS8 0 1 255 255
ccQkqOHX75 -1 1 0 0
DN0iXaoDLd 0 1 0 0
... .. .. ... ...
Dfb141wAaQ 1 1 254 254
IPD8eQOVu5 0 1 0 0
CcaKulsCmv 0 1 0 0
rIBa8gu7E5 0 1 0 0
RP6peZmh5o 0 1 1 1
NMb9pipQWQ 0 1 0 0
PqgbJEzjib 0 1 3 3
[30 rows x 4 columns]
"""
df = DataFrame({k: v.astype(int) for k, v in tm.getSeriesData().items()})
df.A = df.A.astype("int32")
df.B = np.ones(len(df.B), dtype="uint64")
df.C = df.C.astype("uint8")
df.D = df.C.astype("int64")
return df
@pytest.fixture
def mixed_type_frame():
"""
Fixture for DataFrame of float/int/string columns with RangeIndex
Columns are ['a', 'b', 'c', 'float32', 'int32'].
"""
return DataFrame(
{
"a": 1.0,
"b": 2,
"c": "foo",
"float32": np.array([1.0] * 10, dtype="float32"),
"int32": np.array([1] * 10, dtype="int32"),
},
index=np.arange(10),
)
@pytest.fixture
def timezone_frame():
"""
Fixture for DataFrame of date_range Series with different time zones
Columns are ['A', 'B', 'C']; some entries are missing
A B C
0 2013-01-01 2013-01-01 00:00:00-05:00 2013-01-01 00:00:00+01:00
1 2013-01-02 NaT NaT
2 2013-01-03 2013-01-03 00:00:00-05:00 2013-01-03 00:00:00+01:00
"""
df = DataFrame(
{
"A": date_range("20130101", periods=3),
"B": date_range("20130101", periods=3, tz="US/Eastern"),
"C": date_range("20130101", periods=3, tz="CET"),
}
)
df.iloc[1, 1] = NaT
df.iloc[1, 2] = NaT
return df
@pytest.fixture
def uint64_frame():
"""
Fixture for DataFrame with uint64 values
Columns are ['A', 'B']
"""
return DataFrame(
{"A": np.arange(3), "B": [2 ** 63, 2 ** 63 + 5, 2 ** 63 + 10]}, dtype=np.uint64
)
@pytest.fixture
def simple_frame():
"""
Fixture for simple 3x3 DataFrame
Columns are ['one', 'two', 'three'], index is ['a', 'b', 'c'].
one two three
a 1.0 2.0 3.0
b 4.0 5.0 6.0
c 7.0 8.0 9.0
"""
arr = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]])
return DataFrame(arr, columns=["one", "two", "three"], index=["a", "b", "c"])
@pytest.fixture
def frame_of_index_cols():
"""
Fixture for DataFrame of columns that can be used for indexing
Columns are ['A', 'B', 'C', 'D', 'E', ('tuple', 'as', 'label')];
'A' & 'B' contain duplicates (but are jointly unique), the rest are unique.
A B C D E (tuple, as, label)
0 foo one a 0.608477 -0.012500 -1.664297
1 foo two b -0.633460 0.249614 -0.364411
2 foo three c 0.615256 2.154968 -0.834666
3 bar one d 0.234246 1.085675 0.718445
4 bar two e 0.533841 -0.005702 -3.533912
"""
df = DataFrame(
{
"A": ["foo", "foo", "foo", "bar", "bar"],
"B": ["one", "two", "three", "one", "two"],
"C": ["a", "b", "c", "d", "e"],
"D": np.random.randn(5),
"E": np.random.randn(5),
("tuple", "as", "label"): np.random.randn(5),
}
)
return df