1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/venv/lib/python3.9/site-packages/pandas/tests/computation/test_eval.py

2074 lines
72 KiB

from distutils.version import LooseVersion
from functools import reduce
from itertools import product
import operator
from typing import Dict, Type
import warnings
import numpy as np
from numpy.random import rand, randint, randn
import pytest
from pandas.errors import PerformanceWarning
import pandas.util._test_decorators as td
from pandas.core.dtypes.common import is_bool, is_list_like, is_scalar
import pandas as pd
from pandas import DataFrame, Series, compat, date_range
import pandas._testing as tm
from pandas.core.computation import pytables
from pandas.core.computation.check import _NUMEXPR_VERSION
from pandas.core.computation.engines import NumExprClobberingError, _engines
import pandas.core.computation.expr as expr
from pandas.core.computation.expr import (
BaseExprVisitor,
PandasExprVisitor,
PythonExprVisitor,
)
from pandas.core.computation.expressions import _NUMEXPR_INSTALLED, _USE_NUMEXPR
from pandas.core.computation.ops import (
_arith_ops_syms,
_binary_math_ops,
_binary_ops_dict,
_special_case_arith_ops_syms,
_unary_math_ops,
)
@pytest.fixture(
params=(
pytest.param(
engine,
marks=pytest.mark.skipif(
engine == "numexpr" and not _USE_NUMEXPR,
reason=f"numexpr enabled->{_USE_NUMEXPR}, "
f"installed->{_NUMEXPR_INSTALLED}",
),
)
for engine in _engines
)
) # noqa
def engine(request):
return request.param
@pytest.fixture(params=expr._parsers)
def parser(request):
return request.param
@pytest.fixture
def ne_lt_2_6_9():
if _NUMEXPR_INSTALLED and _NUMEXPR_VERSION >= LooseVersion("2.6.9"):
pytest.skip("numexpr is >= 2.6.9")
return "numexpr"
@pytest.fixture
def unary_fns_for_ne():
if _NUMEXPR_INSTALLED:
if _NUMEXPR_VERSION >= LooseVersion("2.6.9"):
return _unary_math_ops
else:
return tuple(x for x in _unary_math_ops if x not in ("floor", "ceil"))
else:
pytest.skip("numexpr is not present")
def engine_has_neg_frac(engine):
return _engines[engine].has_neg_frac
def _eval_single_bin(lhs, cmp1, rhs, engine):
c = _binary_ops_dict[cmp1]
if engine_has_neg_frac(engine):
try:
return c(lhs, rhs)
except ValueError as e:
if str(e).startswith(
"negative number cannot be raised to a fractional power"
):
return np.nan
raise
return c(lhs, rhs)
def _series_and_2d_ndarray(lhs, rhs):
return (
isinstance(lhs, Series) and isinstance(rhs, np.ndarray) and rhs.ndim > 1
) or (isinstance(rhs, Series) and isinstance(lhs, np.ndarray) and lhs.ndim > 1)
def _series_and_frame(lhs, rhs):
return (isinstance(lhs, Series) and isinstance(rhs, DataFrame)) or (
isinstance(rhs, Series) and isinstance(lhs, DataFrame)
)
def _bool_and_frame(lhs, rhs):
return isinstance(lhs, bool) and isinstance(rhs, pd.core.generic.NDFrame)
def _is_py3_complex_incompat(result, expected):
return isinstance(expected, (complex, np.complexfloating)) and np.isnan(result)
_good_arith_ops = set(_arith_ops_syms).difference(_special_case_arith_ops_syms)
@td.skip_if_no_ne
class TestEvalNumexprPandas:
@classmethod
def setup_class(cls):
import numexpr as ne
cls.ne = ne
cls.engine = "numexpr"
cls.parser = "pandas"
@classmethod
def teardown_class(cls):
del cls.engine, cls.parser
if hasattr(cls, "ne"):
del cls.ne
def setup_data(self):
nan_df1 = DataFrame(rand(10, 5))
nan_df1[nan_df1 > 0.5] = np.nan
nan_df2 = DataFrame(rand(10, 5))
nan_df2[nan_df2 > 0.5] = np.nan
self.pandas_lhses = (
DataFrame(randn(10, 5)),
Series(randn(5)),
Series([1, 2, np.nan, np.nan, 5]),
nan_df1,
)
self.pandas_rhses = (
DataFrame(randn(10, 5)),
Series(randn(5)),
Series([1, 2, np.nan, np.nan, 5]),
nan_df2,
)
self.scalar_lhses = (randn(),)
self.scalar_rhses = (randn(),)
self.lhses = self.pandas_lhses + self.scalar_lhses
self.rhses = self.pandas_rhses + self.scalar_rhses
def setup_ops(self):
self.cmp_ops = expr._cmp_ops_syms
self.cmp2_ops = self.cmp_ops[::-1]
self.bin_ops = expr._bool_ops_syms
self.special_case_ops = _special_case_arith_ops_syms
self.arith_ops = _good_arith_ops
self.unary_ops = "-", "~", "not "
def setup_method(self, method):
self.setup_ops()
self.setup_data()
self.current_engines = filter(lambda x: x != self.engine, _engines)
def teardown_method(self, method):
del self.lhses, self.rhses, self.scalar_rhses, self.scalar_lhses
del self.pandas_rhses, self.pandas_lhses, self.current_engines
@pytest.mark.slow
@pytest.mark.parametrize(
"cmp1",
["!=", "==", "<=", ">=", "<", ">"],
ids=["ne", "eq", "le", "ge", "lt", "gt"],
)
@pytest.mark.parametrize("cmp2", [">", "<"], ids=["gt", "lt"])
def test_complex_cmp_ops(self, cmp1, cmp2):
for lhs, rhs, binop in product(self.lhses, self.rhses, self.bin_ops):
lhs_new = _eval_single_bin(lhs, cmp1, rhs, self.engine)
rhs_new = _eval_single_bin(lhs, cmp2, rhs, self.engine)
expected = _eval_single_bin(lhs_new, binop, rhs_new, self.engine)
ex = f"(lhs {cmp1} rhs) {binop} (lhs {cmp2} rhs)"
result = pd.eval(ex, engine=self.engine, parser=self.parser)
self.check_equal(result, expected)
def test_simple_cmp_ops(self):
bool_lhses = (
DataFrame(tm.randbool(size=(10, 5))),
Series(tm.randbool((5,))),
tm.randbool(),
)
bool_rhses = (
DataFrame(tm.randbool(size=(10, 5))),
Series(tm.randbool((5,))),
tm.randbool(),
)
for lhs, rhs, cmp_op in product(bool_lhses, bool_rhses, self.cmp_ops):
self.check_simple_cmp_op(lhs, cmp_op, rhs)
@pytest.mark.slow
def test_binary_arith_ops(self):
for lhs, op, rhs in product(self.lhses, self.arith_ops, self.rhses):
self.check_binary_arith_op(lhs, op, rhs)
def test_modulus(self):
for lhs, rhs in product(self.lhses, self.rhses):
self.check_modulus(lhs, "%", rhs)
def test_floor_division(self):
for lhs, rhs in product(self.lhses, self.rhses):
self.check_floor_division(lhs, "//", rhs)
@td.skip_if_windows
def test_pow(self):
# odd failure on win32 platform, so skip
for lhs, rhs in product(self.lhses, self.rhses):
self.check_pow(lhs, "**", rhs)
@pytest.mark.slow
def test_single_invert_op(self):
for lhs, op, rhs in product(self.lhses, self.cmp_ops, self.rhses):
self.check_single_invert_op(lhs, op, rhs)
@pytest.mark.slow
def test_compound_invert_op(self):
for lhs, op, rhs in product(self.lhses, self.cmp_ops, self.rhses):
self.check_compound_invert_op(lhs, op, rhs)
@pytest.mark.slow
def test_chained_cmp_op(self):
mids = self.lhses
cmp_ops = "<", ">"
for lhs, cmp1, mid, cmp2, rhs in product(
self.lhses, cmp_ops, mids, cmp_ops, self.rhses
):
self.check_chained_cmp_op(lhs, cmp1, mid, cmp2, rhs)
def check_equal(self, result, expected):
if isinstance(result, DataFrame):
tm.assert_frame_equal(result, expected)
elif isinstance(result, Series):
tm.assert_series_equal(result, expected)
elif isinstance(result, np.ndarray):
tm.assert_numpy_array_equal(result, expected)
else:
assert result == expected
def check_chained_cmp_op(self, lhs, cmp1, mid, cmp2, rhs):
def check_operands(left, right, cmp_op):
return _eval_single_bin(left, cmp_op, right, self.engine)
lhs_new = check_operands(lhs, mid, cmp1)
rhs_new = check_operands(mid, rhs, cmp2)
if lhs_new is not None and rhs_new is not None:
ex1 = f"lhs {cmp1} mid {cmp2} rhs"
ex2 = f"lhs {cmp1} mid and mid {cmp2} rhs"
ex3 = f"(lhs {cmp1} mid) & (mid {cmp2} rhs)"
expected = _eval_single_bin(lhs_new, "&", rhs_new, self.engine)
for ex in (ex1, ex2, ex3):
result = pd.eval(ex, engine=self.engine, parser=self.parser)
tm.assert_almost_equal(result, expected)
def check_simple_cmp_op(self, lhs, cmp1, rhs):
ex = f"lhs {cmp1} rhs"
msg = (
r"only list-like( or dict-like)? objects are allowed to be "
r"passed to (DataFrame\.)?isin\(\), you passed a "
r"(\[|')bool(\]|')|"
"argument of type 'bool' is not iterable"
)
if cmp1 in ("in", "not in") and not is_list_like(rhs):
with pytest.raises(TypeError, match=msg):
pd.eval(
ex,
engine=self.engine,
parser=self.parser,
local_dict={"lhs": lhs, "rhs": rhs},
)
else:
expected = _eval_single_bin(lhs, cmp1, rhs, self.engine)
result = pd.eval(ex, engine=self.engine, parser=self.parser)
self.check_equal(result, expected)
def check_binary_arith_op(self, lhs, arith1, rhs):
ex = f"lhs {arith1} rhs"
result = pd.eval(ex, engine=self.engine, parser=self.parser)
expected = _eval_single_bin(lhs, arith1, rhs, self.engine)
tm.assert_almost_equal(result, expected)
ex = f"lhs {arith1} rhs {arith1} rhs"
result = pd.eval(ex, engine=self.engine, parser=self.parser)
nlhs = _eval_single_bin(lhs, arith1, rhs, self.engine)
self.check_alignment(result, nlhs, rhs, arith1)
def check_alignment(self, result, nlhs, ghs, op):
try:
nlhs, ghs = nlhs.align(ghs)
except (ValueError, TypeError, AttributeError):
# ValueError: series frame or frame series align
# TypeError, AttributeError: series or frame with scalar align
pass
else:
# direct numpy comparison
expected = self.ne.evaluate(f"nlhs {op} ghs")
tm.assert_numpy_array_equal(result.values, expected)
# modulus, pow, and floor division require special casing
def check_modulus(self, lhs, arith1, rhs):
ex = f"lhs {arith1} rhs"
result = pd.eval(ex, engine=self.engine, parser=self.parser)
expected = lhs % rhs
tm.assert_almost_equal(result, expected)
expected = self.ne.evaluate(f"expected {arith1} rhs")
if isinstance(result, (DataFrame, Series)):
tm.assert_almost_equal(result.values, expected)
else:
tm.assert_almost_equal(result, expected.item())
def check_floor_division(self, lhs, arith1, rhs):
ex = f"lhs {arith1} rhs"
if self.engine == "python":
res = pd.eval(ex, engine=self.engine, parser=self.parser)
expected = lhs // rhs
self.check_equal(res, expected)
else:
msg = (
r"unsupported operand type\(s\) for //: 'VariableNode' and "
"'VariableNode'"
)
with pytest.raises(TypeError, match=msg):
pd.eval(
ex,
local_dict={"lhs": lhs, "rhs": rhs},
engine=self.engine,
parser=self.parser,
)
def get_expected_pow_result(self, lhs, rhs):
try:
expected = _eval_single_bin(lhs, "**", rhs, self.engine)
except ValueError as e:
if str(e).startswith(
"negative number cannot be raised to a fractional power"
):
if self.engine == "python":
pytest.skip(str(e))
else:
expected = np.nan
else:
raise
return expected
def check_pow(self, lhs, arith1, rhs):
ex = f"lhs {arith1} rhs"
expected = self.get_expected_pow_result(lhs, rhs)
result = pd.eval(ex, engine=self.engine, parser=self.parser)
if (
is_scalar(lhs)
and is_scalar(rhs)
and _is_py3_complex_incompat(result, expected)
):
msg = "(DataFrame.columns|numpy array) are different"
with pytest.raises(AssertionError, match=msg):
tm.assert_numpy_array_equal(result, expected)
else:
tm.assert_almost_equal(result, expected)
ex = f"(lhs {arith1} rhs) {arith1} rhs"
result = pd.eval(ex, engine=self.engine, parser=self.parser)
expected = self.get_expected_pow_result(
self.get_expected_pow_result(lhs, rhs), rhs
)
tm.assert_almost_equal(result, expected)
def check_single_invert_op(self, lhs, cmp1, rhs):
# simple
for el in (lhs, rhs):
try:
elb = el.astype(bool)
except AttributeError:
elb = np.array([bool(el)])
expected = ~elb
result = pd.eval("~elb", engine=self.engine, parser=self.parser)
tm.assert_almost_equal(expected, result)
for engine in self.current_engines:
tm.assert_almost_equal(
result, pd.eval("~elb", engine=engine, parser=self.parser)
)
def check_compound_invert_op(self, lhs, cmp1, rhs):
skip_these = ["in", "not in"]
ex = f"~(lhs {cmp1} rhs)"
msg = (
r"only list-like( or dict-like)? objects are allowed to be "
r"passed to (DataFrame\.)?isin\(\), you passed a "
r"(\[|')float(\]|')|"
"argument of type 'float' is not iterable"
)
if is_scalar(rhs) and cmp1 in skip_these:
with pytest.raises(TypeError, match=msg):
pd.eval(
ex,
engine=self.engine,
parser=self.parser,
local_dict={"lhs": lhs, "rhs": rhs},
)
else:
# compound
if is_scalar(lhs) and is_scalar(rhs):
lhs, rhs = map(lambda x: np.array([x]), (lhs, rhs))
expected = _eval_single_bin(lhs, cmp1, rhs, self.engine)
if is_scalar(expected):
expected = not expected
else:
expected = ~expected
result = pd.eval(ex, engine=self.engine, parser=self.parser)
tm.assert_almost_equal(expected, result)
# make sure the other engines work the same as this one
for engine in self.current_engines:
ev = pd.eval(ex, engine=self.engine, parser=self.parser)
tm.assert_almost_equal(ev, result)
def ex(self, op, var_name="lhs"):
return f"{op}{var_name}"
def test_frame_invert(self):
expr = self.ex("~")
# ~ ##
# frame
# float always raises
lhs = DataFrame(randn(5, 2))
if self.engine == "numexpr":
msg = "couldn't find matching opcode for 'invert_dd'"
with pytest.raises(NotImplementedError, match=msg):
result = pd.eval(expr, engine=self.engine, parser=self.parser)
else:
msg = "ufunc 'invert' not supported for the input types"
with pytest.raises(TypeError, match=msg):
result = pd.eval(expr, engine=self.engine, parser=self.parser)
# int raises on numexpr
lhs = DataFrame(randint(5, size=(5, 2)))
if self.engine == "numexpr":
msg = "couldn't find matching opcode for 'invert"
with pytest.raises(NotImplementedError, match=msg):
result = pd.eval(expr, engine=self.engine, parser=self.parser)
else:
expect = ~lhs
result = pd.eval(expr, engine=self.engine, parser=self.parser)
tm.assert_frame_equal(expect, result)
# bool always works
lhs = DataFrame(rand(5, 2) > 0.5)
expect = ~lhs
result = pd.eval(expr, engine=self.engine, parser=self.parser)
tm.assert_frame_equal(expect, result)
# object raises
lhs = DataFrame({"b": ["a", 1, 2.0], "c": rand(3) > 0.5})
if self.engine == "numexpr":
with pytest.raises(ValueError, match="unknown type object"):
result = pd.eval(expr, engine=self.engine, parser=self.parser)
else:
msg = "bad operand type for unary ~: 'str'"
with pytest.raises(TypeError, match=msg):
result = pd.eval(expr, engine=self.engine, parser=self.parser)
def test_series_invert(self):
# ~ ####
expr = self.ex("~")
# series
# float raises
lhs = Series(randn(5))
if self.engine == "numexpr":
msg = "couldn't find matching opcode for 'invert_dd'"
with pytest.raises(NotImplementedError, match=msg):
result = pd.eval(expr, engine=self.engine, parser=self.parser)
else:
msg = "ufunc 'invert' not supported for the input types"
with pytest.raises(TypeError, match=msg):
result = pd.eval(expr, engine=self.engine, parser=self.parser)
# int raises on numexpr
lhs = Series(randint(5, size=5))
if self.engine == "numexpr":
msg = "couldn't find matching opcode for 'invert"
with pytest.raises(NotImplementedError, match=msg):
result = pd.eval(expr, engine=self.engine, parser=self.parser)
else:
expect = ~lhs
result = pd.eval(expr, engine=self.engine, parser=self.parser)
tm.assert_series_equal(expect, result)
# bool
lhs = Series(rand(5) > 0.5)
expect = ~lhs
result = pd.eval(expr, engine=self.engine, parser=self.parser)
tm.assert_series_equal(expect, result)
# float
# int
# bool
# object
lhs = Series(["a", 1, 2.0])
if self.engine == "numexpr":
with pytest.raises(ValueError, match="unknown type object"):
result = pd.eval(expr, engine=self.engine, parser=self.parser)
else:
msg = "bad operand type for unary ~: 'str'"
with pytest.raises(TypeError, match=msg):
result = pd.eval(expr, engine=self.engine, parser=self.parser)
def test_frame_negate(self):
expr = self.ex("-")
# float
lhs = DataFrame(randn(5, 2))
expect = -lhs
result = pd.eval(expr, engine=self.engine, parser=self.parser)
tm.assert_frame_equal(expect, result)
# int
lhs = DataFrame(randint(5, size=(5, 2)))
expect = -lhs
result = pd.eval(expr, engine=self.engine, parser=self.parser)
tm.assert_frame_equal(expect, result)
# bool doesn't work with numexpr but works elsewhere
lhs = DataFrame(rand(5, 2) > 0.5)
if self.engine == "numexpr":
msg = "couldn't find matching opcode for 'neg_bb'"
with pytest.raises(NotImplementedError, match=msg):
result = pd.eval(expr, engine=self.engine, parser=self.parser)
else:
expect = -lhs
result = pd.eval(expr, engine=self.engine, parser=self.parser)
tm.assert_frame_equal(expect, result)
def test_series_negate(self):
expr = self.ex("-")
# float
lhs = Series(randn(5))
expect = -lhs
result = pd.eval(expr, engine=self.engine, parser=self.parser)
tm.assert_series_equal(expect, result)
# int
lhs = Series(randint(5, size=5))
expect = -lhs
result = pd.eval(expr, engine=self.engine, parser=self.parser)
tm.assert_series_equal(expect, result)
# bool doesn't work with numexpr but works elsewhere
lhs = Series(rand(5) > 0.5)
if self.engine == "numexpr":
msg = "couldn't find matching opcode for 'neg_bb'"
with pytest.raises(NotImplementedError, match=msg):
result = pd.eval(expr, engine=self.engine, parser=self.parser)
else:
expect = -lhs
result = pd.eval(expr, engine=self.engine, parser=self.parser)
tm.assert_series_equal(expect, result)
@pytest.mark.parametrize(
"lhs",
[
# Float
DataFrame(randn(5, 2)),
# Int
DataFrame(randint(5, size=(5, 2))),
# bool doesn't work with numexpr but works elsewhere
DataFrame(rand(5, 2) > 0.5),
],
)
def test_frame_pos(self, lhs):
expr = self.ex("+")
expect = lhs
result = pd.eval(expr, engine=self.engine, parser=self.parser)
tm.assert_frame_equal(expect, result)
@pytest.mark.parametrize(
"lhs",
[
# Float
Series(randn(5)),
# Int
Series(randint(5, size=5)),
# bool doesn't work with numexpr but works elsewhere
Series(rand(5) > 0.5),
],
)
def test_series_pos(self, lhs):
expr = self.ex("+")
expect = lhs
result = pd.eval(expr, engine=self.engine, parser=self.parser)
tm.assert_series_equal(expect, result)
def test_scalar_unary(self):
msg = "bad operand type for unary ~: 'float'"
with pytest.raises(TypeError, match=msg):
pd.eval("~1.0", engine=self.engine, parser=self.parser)
assert pd.eval("-1.0", parser=self.parser, engine=self.engine) == -1.0
assert pd.eval("+1.0", parser=self.parser, engine=self.engine) == +1.0
assert pd.eval("~1", parser=self.parser, engine=self.engine) == ~1
assert pd.eval("-1", parser=self.parser, engine=self.engine) == -1
assert pd.eval("+1", parser=self.parser, engine=self.engine) == +1
assert pd.eval("~True", parser=self.parser, engine=self.engine) == ~True
assert pd.eval("~False", parser=self.parser, engine=self.engine) == ~False
assert pd.eval("-True", parser=self.parser, engine=self.engine) == -True
assert pd.eval("-False", parser=self.parser, engine=self.engine) == -False
assert pd.eval("+True", parser=self.parser, engine=self.engine) == +True
assert pd.eval("+False", parser=self.parser, engine=self.engine) == +False
def test_unary_in_array(self):
# GH 11235
tm.assert_numpy_array_equal(
pd.eval(
"[-True, True, ~True, +True,"
"-False, False, ~False, +False,"
"-37, 37, ~37, +37]"
),
np.array(
[
-True,
True,
~True,
+True,
-False,
False,
~False,
+False,
-37,
37,
~37,
+37,
],
dtype=np.object_,
),
)
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
def test_float_comparison_bin_op(self, dtype):
# GH 16363
df = pd.DataFrame({"x": np.array([0], dtype=dtype)})
res = df.eval("x < -0.1")
assert res.values == np.array([False])
res = df.eval("-5 > x")
assert res.values == np.array([False])
def test_disallow_scalar_bool_ops(self):
exprs = "1 or 2", "1 and 2"
exprs += "a and b", "a or b"
exprs += ("1 or 2 and (3 + 2) > 3",)
exprs += ("2 * x > 2 or 1 and 2",)
exprs += ("2 * df > 3 and 1 or a",)
x, a, b, df = np.random.randn(3), 1, 2, DataFrame(randn(3, 2)) # noqa
for ex in exprs:
msg = "cannot evaluate scalar only bool ops|'BoolOp' nodes are not"
with pytest.raises(NotImplementedError, match=msg):
pd.eval(ex, engine=self.engine, parser=self.parser)
def test_identical(self):
# see gh-10546
x = 1
result = pd.eval("x", engine=self.engine, parser=self.parser)
assert result == 1
assert is_scalar(result)
x = 1.5
result = pd.eval("x", engine=self.engine, parser=self.parser)
assert result == 1.5
assert is_scalar(result)
x = False
result = pd.eval("x", engine=self.engine, parser=self.parser)
assert not result
assert is_bool(result)
assert is_scalar(result)
x = np.array([1])
result = pd.eval("x", engine=self.engine, parser=self.parser)
tm.assert_numpy_array_equal(result, np.array([1]))
assert result.shape == (1,)
x = np.array([1.5])
result = pd.eval("x", engine=self.engine, parser=self.parser)
tm.assert_numpy_array_equal(result, np.array([1.5]))
assert result.shape == (1,)
x = np.array([False]) # noqa
result = pd.eval("x", engine=self.engine, parser=self.parser)
tm.assert_numpy_array_equal(result, np.array([False]))
assert result.shape == (1,)
def test_line_continuation(self):
# GH 11149
exp = """1 + 2 * \
5 - 1 + 2 """
result = pd.eval(exp, engine=self.engine, parser=self.parser)
assert result == 12
def test_float_truncation(self):
# GH 14241
exp = "1000000000.006"
result = pd.eval(exp, engine=self.engine, parser=self.parser)
expected = np.float64(exp)
assert result == expected
df = pd.DataFrame({"A": [1000000000.0009, 1000000000.0011, 1000000000.0015]})
cutoff = 1000000000.0006
result = df.query(f"A < {cutoff:.4f}")
assert result.empty
cutoff = 1000000000.0010
result = df.query(f"A > {cutoff:.4f}")
expected = df.loc[[1, 2], :]
tm.assert_frame_equal(expected, result)
exact = 1000000000.0011
result = df.query(f"A == {exact:.4f}")
expected = df.loc[[1], :]
tm.assert_frame_equal(expected, result)
def test_disallow_python_keywords(self):
# GH 18221
df = pd.DataFrame([[0, 0, 0]], columns=["foo", "bar", "class"])
msg = "Python keyword not valid identifier in numexpr query"
with pytest.raises(SyntaxError, match=msg):
df.query("class == 0")
df = pd.DataFrame()
df.index.name = "lambda"
with pytest.raises(SyntaxError, match=msg):
df.query("lambda == 0")
@td.skip_if_no_ne
class TestEvalNumexprPython(TestEvalNumexprPandas):
@classmethod
def setup_class(cls):
super().setup_class()
import numexpr as ne
cls.ne = ne
cls.engine = "numexpr"
cls.parser = "python"
def setup_ops(self):
self.cmp_ops = list(
filter(lambda x: x not in ("in", "not in"), expr._cmp_ops_syms)
)
self.cmp2_ops = self.cmp_ops[::-1]
self.bin_ops = [s for s in expr._bool_ops_syms if s not in ("and", "or")]
self.special_case_ops = _special_case_arith_ops_syms
self.arith_ops = _good_arith_ops
self.unary_ops = "+", "-", "~"
def check_chained_cmp_op(self, lhs, cmp1, mid, cmp2, rhs):
ex1 = f"lhs {cmp1} mid {cmp2} rhs"
msg = "'BoolOp' nodes are not implemented"
with pytest.raises(NotImplementedError, match=msg):
pd.eval(ex1, engine=self.engine, parser=self.parser)
class TestEvalPythonPython(TestEvalNumexprPython):
@classmethod
def setup_class(cls):
super().setup_class()
cls.engine = "python"
cls.parser = "python"
def check_modulus(self, lhs, arith1, rhs):
ex = f"lhs {arith1} rhs"
result = pd.eval(ex, engine=self.engine, parser=self.parser)
expected = lhs % rhs
tm.assert_almost_equal(result, expected)
expected = _eval_single_bin(expected, arith1, rhs, self.engine)
tm.assert_almost_equal(result, expected)
def check_alignment(self, result, nlhs, ghs, op):
try:
nlhs, ghs = nlhs.align(ghs)
except (ValueError, TypeError, AttributeError):
# ValueError: series frame or frame series align
# TypeError, AttributeError: series or frame with scalar align
pass
else:
expected = eval(f"nlhs {op} ghs")
tm.assert_almost_equal(result, expected)
class TestEvalPythonPandas(TestEvalPythonPython):
@classmethod
def setup_class(cls):
super().setup_class()
cls.engine = "python"
cls.parser = "pandas"
def check_chained_cmp_op(self, lhs, cmp1, mid, cmp2, rhs):
TestEvalNumexprPandas.check_chained_cmp_op(self, lhs, cmp1, mid, cmp2, rhs)
f = lambda *args, **kwargs: np.random.randn()
# -------------------------------------
# gh-12388: Typecasting rules consistency with python
class TestTypeCasting:
@pytest.mark.parametrize("op", ["+", "-", "*", "**", "/"])
# maybe someday... numexpr has too many upcasting rules now
# chain(*(np.sctypes[x] for x in ['uint', 'int', 'float']))
@pytest.mark.parametrize("dt", [np.float32, np.float64])
def test_binop_typecasting(self, engine, parser, op, dt):
df = tm.makeCustomDataframe(5, 3, data_gen_f=f, dtype=dt)
s = f"df {op} 3"
res = pd.eval(s, engine=engine, parser=parser)
assert df.values.dtype == dt
assert res.values.dtype == dt
tm.assert_frame_equal(res, eval(s))
s = f"3 {op} df"
res = pd.eval(s, engine=engine, parser=parser)
assert df.values.dtype == dt
assert res.values.dtype == dt
tm.assert_frame_equal(res, eval(s))
# -------------------------------------
# Basic and complex alignment
def _is_datetime(x):
return issubclass(x.dtype.type, np.datetime64)
def should_warn(*args):
not_mono = not any(map(operator.attrgetter("is_monotonic"), args))
only_one_dt = reduce(operator.xor, map(_is_datetime, args))
return not_mono and only_one_dt
class TestAlignment:
index_types = "i", "u", "dt"
lhs_index_types = index_types + ("s",) # 'p'
def test_align_nested_unary_op(self, engine, parser):
s = "df * ~2"
df = tm.makeCustomDataframe(5, 3, data_gen_f=f)
res = pd.eval(s, engine=engine, parser=parser)
tm.assert_frame_equal(res, df * ~2)
def test_basic_frame_alignment(self, engine, parser):
args = product(self.lhs_index_types, self.index_types, self.index_types)
with warnings.catch_warnings(record=True):
warnings.simplefilter("always", RuntimeWarning)
for lr_idx_type, rr_idx_type, c_idx_type in args:
df = tm.makeCustomDataframe(
10, 10, data_gen_f=f, r_idx_type=lr_idx_type, c_idx_type=c_idx_type
)
df2 = tm.makeCustomDataframe(
20, 10, data_gen_f=f, r_idx_type=rr_idx_type, c_idx_type=c_idx_type
)
# only warns if not monotonic and not sortable
if should_warn(df.index, df2.index):
with tm.assert_produces_warning(RuntimeWarning):
res = pd.eval("df + df2", engine=engine, parser=parser)
else:
res = pd.eval("df + df2", engine=engine, parser=parser)
tm.assert_frame_equal(res, df + df2)
def test_frame_comparison(self, engine, parser):
args = product(self.lhs_index_types, repeat=2)
for r_idx_type, c_idx_type in args:
df = tm.makeCustomDataframe(
10, 10, data_gen_f=f, r_idx_type=r_idx_type, c_idx_type=c_idx_type
)
res = pd.eval("df < 2", engine=engine, parser=parser)
tm.assert_frame_equal(res, df < 2)
df3 = DataFrame(randn(*df.shape), index=df.index, columns=df.columns)
res = pd.eval("df < df3", engine=engine, parser=parser)
tm.assert_frame_equal(res, df < df3)
@pytest.mark.slow
def test_medium_complex_frame_alignment(self, engine, parser):
args = product(
self.lhs_index_types, self.index_types, self.index_types, self.index_types
)
with warnings.catch_warnings(record=True):
warnings.simplefilter("always", RuntimeWarning)
for r1, c1, r2, c2 in args:
df = tm.makeCustomDataframe(
3, 2, data_gen_f=f, r_idx_type=r1, c_idx_type=c1
)
df2 = tm.makeCustomDataframe(
4, 2, data_gen_f=f, r_idx_type=r2, c_idx_type=c2
)
df3 = tm.makeCustomDataframe(
5, 2, data_gen_f=f, r_idx_type=r2, c_idx_type=c2
)
if should_warn(df.index, df2.index, df3.index):
with tm.assert_produces_warning(RuntimeWarning):
res = pd.eval("df + df2 + df3", engine=engine, parser=parser)
else:
res = pd.eval("df + df2 + df3", engine=engine, parser=parser)
tm.assert_frame_equal(res, df + df2 + df3)
def test_basic_frame_series_alignment(self, engine, parser):
def testit(r_idx_type, c_idx_type, index_name):
df = tm.makeCustomDataframe(
10, 10, data_gen_f=f, r_idx_type=r_idx_type, c_idx_type=c_idx_type
)
index = getattr(df, index_name)
s = Series(np.random.randn(5), index[:5])
if should_warn(df.index, s.index):
with tm.assert_produces_warning(RuntimeWarning):
res = pd.eval("df + s", engine=engine, parser=parser)
else:
res = pd.eval("df + s", engine=engine, parser=parser)
if r_idx_type == "dt" or c_idx_type == "dt":
expected = df.add(s) if engine == "numexpr" else df + s
else:
expected = df + s
tm.assert_frame_equal(res, expected)
args = product(self.lhs_index_types, self.index_types, ("index", "columns"))
with warnings.catch_warnings(record=True):
warnings.simplefilter("always", RuntimeWarning)
for r_idx_type, c_idx_type, index_name in args:
testit(r_idx_type, c_idx_type, index_name)
def test_basic_series_frame_alignment(self, engine, parser):
def testit(r_idx_type, c_idx_type, index_name):
df = tm.makeCustomDataframe(
10, 7, data_gen_f=f, r_idx_type=r_idx_type, c_idx_type=c_idx_type
)
index = getattr(df, index_name)
s = Series(np.random.randn(5), index[:5])
if should_warn(s.index, df.index):
with tm.assert_produces_warning(RuntimeWarning):
res = pd.eval("s + df", engine=engine, parser=parser)
else:
res = pd.eval("s + df", engine=engine, parser=parser)
if r_idx_type == "dt" or c_idx_type == "dt":
expected = df.add(s) if engine == "numexpr" else s + df
else:
expected = s + df
tm.assert_frame_equal(res, expected)
# only test dt with dt, otherwise weird joins result
args = product(["i", "u", "s"], ["i", "u", "s"], ("index", "columns"))
with warnings.catch_warnings(record=True):
# avoid warning about comparing strings and ints
warnings.simplefilter("ignore", RuntimeWarning)
for r_idx_type, c_idx_type, index_name in args:
testit(r_idx_type, c_idx_type, index_name)
# dt with dt
args = product(["dt"], ["dt"], ("index", "columns"))
with warnings.catch_warnings(record=True):
# avoid warning about comparing strings and ints
warnings.simplefilter("ignore", RuntimeWarning)
for r_idx_type, c_idx_type, index_name in args:
testit(r_idx_type, c_idx_type, index_name)
def test_series_frame_commutativity(self, engine, parser):
args = product(
self.lhs_index_types, self.index_types, ("+", "*"), ("index", "columns")
)
with warnings.catch_warnings(record=True):
warnings.simplefilter("always", RuntimeWarning)
for r_idx_type, c_idx_type, op, index_name in args:
df = tm.makeCustomDataframe(
10, 10, data_gen_f=f, r_idx_type=r_idx_type, c_idx_type=c_idx_type
)
index = getattr(df, index_name)
s = Series(np.random.randn(5), index[:5])
lhs = f"s {op} df"
rhs = f"df {op} s"
if should_warn(df.index, s.index):
with tm.assert_produces_warning(RuntimeWarning):
a = pd.eval(lhs, engine=engine, parser=parser)
with tm.assert_produces_warning(RuntimeWarning):
b = pd.eval(rhs, engine=engine, parser=parser)
else:
a = pd.eval(lhs, engine=engine, parser=parser)
b = pd.eval(rhs, engine=engine, parser=parser)
if r_idx_type != "dt" and c_idx_type != "dt":
if engine == "numexpr":
tm.assert_frame_equal(a, b)
@pytest.mark.slow
def test_complex_series_frame_alignment(self, engine, parser):
import random
args = product(
self.lhs_index_types, self.index_types, self.index_types, self.index_types
)
n = 3
m1 = 5
m2 = 2 * m1
with warnings.catch_warnings(record=True):
warnings.simplefilter("always", RuntimeWarning)
for r1, r2, c1, c2 in args:
index_name = random.choice(["index", "columns"])
obj_name = random.choice(["df", "df2"])
df = tm.makeCustomDataframe(
m1, n, data_gen_f=f, r_idx_type=r1, c_idx_type=c1
)
df2 = tm.makeCustomDataframe(
m2, n, data_gen_f=f, r_idx_type=r2, c_idx_type=c2
)
index = getattr(locals().get(obj_name), index_name)
s = Series(np.random.randn(n), index[:n])
if r2 == "dt" or c2 == "dt":
if engine == "numexpr":
expected2 = df2.add(s)
else:
expected2 = df2 + s
else:
expected2 = df2 + s
if r1 == "dt" or c1 == "dt":
if engine == "numexpr":
expected = expected2.add(df)
else:
expected = expected2 + df
else:
expected = expected2 + df
if should_warn(df2.index, s.index, df.index):
with tm.assert_produces_warning(RuntimeWarning):
res = pd.eval("df2 + s + df", engine=engine, parser=parser)
else:
res = pd.eval("df2 + s + df", engine=engine, parser=parser)
assert res.shape == expected.shape
tm.assert_frame_equal(res, expected)
def test_performance_warning_for_poor_alignment(self, engine, parser):
df = DataFrame(randn(1000, 10))
s = Series(randn(10000))
if engine == "numexpr":
seen = PerformanceWarning
else:
seen = False
with tm.assert_produces_warning(seen):
pd.eval("df + s", engine=engine, parser=parser)
s = Series(randn(1000))
with tm.assert_produces_warning(False):
pd.eval("df + s", engine=engine, parser=parser)
df = DataFrame(randn(10, 10000))
s = Series(randn(10000))
with tm.assert_produces_warning(False):
pd.eval("df + s", engine=engine, parser=parser)
df = DataFrame(randn(10, 10))
s = Series(randn(10000))
is_python_engine = engine == "python"
if not is_python_engine:
wrn = PerformanceWarning
else:
wrn = False
with tm.assert_produces_warning(wrn) as w:
pd.eval("df + s", engine=engine, parser=parser)
if not is_python_engine:
assert len(w) == 1
msg = str(w[0].message)
loged = np.log10(s.size - df.shape[1])
expected = (
f"Alignment difference on axis 1 is larger "
f"than an order of magnitude on term 'df', "
f"by more than {loged:.4g}; performance may suffer"
)
assert msg == expected
# ------------------------------------
# Slightly more complex ops
@td.skip_if_no_ne
class TestOperationsNumExprPandas:
@classmethod
def setup_class(cls):
cls.engine = "numexpr"
cls.parser = "pandas"
cls.arith_ops = expr._arith_ops_syms + expr._cmp_ops_syms
@classmethod
def teardown_class(cls):
del cls.engine, cls.parser
def eval(self, *args, **kwargs):
kwargs["engine"] = self.engine
kwargs["parser"] = self.parser
kwargs["level"] = kwargs.pop("level", 0) + 1
return pd.eval(*args, **kwargs)
def test_simple_arith_ops(self):
ops = self.arith_ops
for op in filter(lambda x: x != "//", ops):
ex = f"1 {op} 1"
ex2 = f"x {op} 1"
ex3 = f"1 {op} (x + 1)"
if op in ("in", "not in"):
msg = "argument of type 'int' is not iterable"
with pytest.raises(TypeError, match=msg):
pd.eval(ex, engine=self.engine, parser=self.parser)
else:
expec = _eval_single_bin(1, op, 1, self.engine)
x = self.eval(ex, engine=self.engine, parser=self.parser)
assert x == expec
expec = _eval_single_bin(x, op, 1, self.engine)
y = self.eval(
ex2, local_dict={"x": x}, engine=self.engine, parser=self.parser
)
assert y == expec
expec = _eval_single_bin(1, op, x + 1, self.engine)
y = self.eval(
ex3, local_dict={"x": x}, engine=self.engine, parser=self.parser
)
assert y == expec
def test_simple_bool_ops(self):
for op, lhs, rhs in product(expr._bool_ops_syms, (True, False), (True, False)):
ex = f"{lhs} {op} {rhs}"
res = self.eval(ex)
exp = eval(ex)
assert res == exp
def test_bool_ops_with_constants(self):
for op, lhs, rhs in product(
expr._bool_ops_syms, ("True", "False"), ("True", "False")
):
ex = f"{lhs} {op} {rhs}"
res = self.eval(ex)
exp = eval(ex)
assert res == exp
def test_4d_ndarray_fails(self):
x = randn(3, 4, 5, 6)
y = Series(randn(10))
msg = "N-dimensional objects, where N > 2, are not supported with eval"
with pytest.raises(NotImplementedError, match=msg):
self.eval("x + y", local_dict={"x": x, "y": y})
def test_constant(self):
x = self.eval("1")
assert x == 1
def test_single_variable(self):
df = DataFrame(randn(10, 2))
df2 = self.eval("df", local_dict={"df": df})
tm.assert_frame_equal(df, df2)
def test_truediv(self):
s = np.array([1])
ex = "s / 1"
d = {"s": s} # noqa
# FutureWarning: The `truediv` parameter in pd.eval is deprecated and will be
# removed in a future version.
with tm.assert_produces_warning(FutureWarning):
res = self.eval(ex, truediv=False)
tm.assert_numpy_array_equal(res, np.array([1.0]))
with tm.assert_produces_warning(FutureWarning):
res = self.eval(ex, truediv=True)
tm.assert_numpy_array_equal(res, np.array([1.0]))
with tm.assert_produces_warning(FutureWarning):
res = self.eval("1 / 2", truediv=True)
expec = 0.5
assert res == expec
with tm.assert_produces_warning(FutureWarning):
res = self.eval("1 / 2", truediv=False)
expec = 0.5
assert res == expec
with tm.assert_produces_warning(FutureWarning):
res = self.eval("s / 2", truediv=False)
expec = 0.5
assert res == expec
with tm.assert_produces_warning(FutureWarning):
res = self.eval("s / 2", truediv=True)
expec = 0.5
assert res == expec
def test_failing_subscript_with_name_error(self):
df = DataFrame(np.random.randn(5, 3)) # noqa
with pytest.raises(NameError, match="name 'x' is not defined"):
self.eval("df[x > 2] > 2")
def test_lhs_expression_subscript(self):
df = DataFrame(np.random.randn(5, 3))
result = self.eval("(df + 1)[df > 2]", local_dict={"df": df})
expected = (df + 1)[df > 2]
tm.assert_frame_equal(result, expected)
def test_attr_expression(self):
df = DataFrame(np.random.randn(5, 3), columns=list("abc"))
expr1 = "df.a < df.b"
expec1 = df.a < df.b
expr2 = "df.a + df.b + df.c"
expec2 = df.a + df.b + df.c
expr3 = "df.a + df.b + df.c[df.b < 0]"
expec3 = df.a + df.b + df.c[df.b < 0]
exprs = expr1, expr2, expr3
expecs = expec1, expec2, expec3
for e, expec in zip(exprs, expecs):
tm.assert_series_equal(expec, self.eval(e, local_dict={"df": df}))
def test_assignment_fails(self):
df = DataFrame(np.random.randn(5, 3), columns=list("abc"))
df2 = DataFrame(np.random.randn(5, 3))
expr1 = "df = df2"
msg = "cannot assign without a target object"
with pytest.raises(ValueError, match=msg):
self.eval(expr1, local_dict={"df": df, "df2": df2})
def test_assignment_column(self):
df = DataFrame(np.random.randn(5, 2), columns=list("ab"))
orig_df = df.copy()
# multiple assignees
with pytest.raises(SyntaxError, match="invalid syntax"):
df.eval("d c = a + b")
# invalid assignees
msg = "left hand side of an assignment must be a single name"
with pytest.raises(SyntaxError, match=msg):
df.eval("d,c = a + b")
if compat.PY38:
msg = "cannot assign to function call"
else:
msg = "can't assign to function call"
with pytest.raises(SyntaxError, match=msg):
df.eval('Timestamp("20131001") = a + b')
# single assignment - existing variable
expected = orig_df.copy()
expected["a"] = expected["a"] + expected["b"]
df = orig_df.copy()
df.eval("a = a + b", inplace=True)
tm.assert_frame_equal(df, expected)
# single assignment - new variable
expected = orig_df.copy()
expected["c"] = expected["a"] + expected["b"]
df = orig_df.copy()
df.eval("c = a + b", inplace=True)
tm.assert_frame_equal(df, expected)
# with a local name overlap
def f():
df = orig_df.copy()
a = 1 # noqa
df.eval("a = 1 + b", inplace=True)
return df
df = f()
expected = orig_df.copy()
expected["a"] = 1 + expected["b"]
tm.assert_frame_equal(df, expected)
df = orig_df.copy()
def f():
a = 1 # noqa
old_a = df.a.copy()
df.eval("a = a + b", inplace=True)
result = old_a + df.b
tm.assert_series_equal(result, df.a, check_names=False)
assert result.name is None
f()
# multiple assignment
df = orig_df.copy()
df.eval("c = a + b", inplace=True)
msg = "can only assign a single expression"
with pytest.raises(SyntaxError, match=msg):
df.eval("c = a = b")
# explicit targets
df = orig_df.copy()
self.eval("c = df.a + df.b", local_dict={"df": df}, target=df, inplace=True)
expected = orig_df.copy()
expected["c"] = expected["a"] + expected["b"]
tm.assert_frame_equal(df, expected)
def test_column_in(self):
# GH 11235
df = DataFrame({"a": [11], "b": [-32]})
result = df.eval("a in [11, -32]")
expected = Series([True])
tm.assert_series_equal(result, expected)
def assignment_not_inplace(self):
# see gh-9297
df = DataFrame(np.random.randn(5, 2), columns=list("ab"))
actual = df.eval("c = a + b", inplace=False)
assert actual is not None
expected = df.copy()
expected["c"] = expected["a"] + expected["b"]
tm.assert_frame_equal(df, expected)
def test_multi_line_expression(self):
# GH 11149
df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
expected = df.copy()
expected["c"] = expected["a"] + expected["b"]
expected["d"] = expected["c"] + expected["b"]
ans = df.eval(
"""
c = a + b
d = c + b""",
inplace=True,
)
tm.assert_frame_equal(expected, df)
assert ans is None
expected["a"] = expected["a"] - 1
expected["e"] = expected["a"] + 2
ans = df.eval(
"""
a = a - 1
e = a + 2""",
inplace=True,
)
tm.assert_frame_equal(expected, df)
assert ans is None
# multi-line not valid if not all assignments
msg = "Multi-line expressions are only valid if all expressions contain"
with pytest.raises(ValueError, match=msg):
df.eval(
"""
a = b + 2
b - 2""",
inplace=False,
)
def test_multi_line_expression_not_inplace(self):
# GH 11149
df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
expected = df.copy()
expected["c"] = expected["a"] + expected["b"]
expected["d"] = expected["c"] + expected["b"]
df = df.eval(
"""
c = a + b
d = c + b""",
inplace=False,
)
tm.assert_frame_equal(expected, df)
expected["a"] = expected["a"] - 1
expected["e"] = expected["a"] + 2
df = df.eval(
"""
a = a - 1
e = a + 2""",
inplace=False,
)
tm.assert_frame_equal(expected, df)
def test_multi_line_expression_local_variable(self):
# GH 15342
df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
expected = df.copy()
local_var = 7
expected["c"] = expected["a"] * local_var
expected["d"] = expected["c"] + local_var
ans = df.eval(
"""
c = a * @local_var
d = c + @local_var
""",
inplace=True,
)
tm.assert_frame_equal(expected, df)
assert ans is None
def test_multi_line_expression_callable_local_variable(self):
# 26426
df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
def local_func(a, b):
return b
expected = df.copy()
expected["c"] = expected["a"] * local_func(1, 7)
expected["d"] = expected["c"] + local_func(1, 7)
ans = df.eval(
"""
c = a * @local_func(1, 7)
d = c + @local_func(1, 7)
""",
inplace=True,
)
tm.assert_frame_equal(expected, df)
assert ans is None
def test_multi_line_expression_callable_local_variable_with_kwargs(self):
# 26426
df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
def local_func(a, b):
return b
expected = df.copy()
expected["c"] = expected["a"] * local_func(b=7, a=1)
expected["d"] = expected["c"] + local_func(b=7, a=1)
ans = df.eval(
"""
c = a * @local_func(b=7, a=1)
d = c + @local_func(b=7, a=1)
""",
inplace=True,
)
tm.assert_frame_equal(expected, df)
assert ans is None
def test_assignment_in_query(self):
# GH 8664
df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
df_orig = df.copy()
msg = "cannot assign without a target object"
with pytest.raises(ValueError, match=msg):
df.query("a = 1")
tm.assert_frame_equal(df, df_orig)
def test_query_inplace(self):
# see gh-11149
df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
expected = df.copy()
expected = expected[expected["a"] == 2]
df.query("a == 2", inplace=True)
tm.assert_frame_equal(expected, df)
df = {}
expected = {"a": 3}
self.eval("a = 1 + 2", target=df, inplace=True)
tm.assert_dict_equal(df, expected)
@pytest.mark.parametrize("invalid_target", [1, "cat", [1, 2], np.array([]), (1, 3)])
@pytest.mark.filterwarnings("ignore::FutureWarning")
def test_cannot_item_assign(self, invalid_target):
msg = "Cannot assign expression output to target"
expression = "a = 1 + 2"
with pytest.raises(ValueError, match=msg):
self.eval(expression, target=invalid_target, inplace=True)
if hasattr(invalid_target, "copy"):
with pytest.raises(ValueError, match=msg):
self.eval(expression, target=invalid_target, inplace=False)
@pytest.mark.parametrize("invalid_target", [1, "cat", (1, 3)])
def test_cannot_copy_item(self, invalid_target):
msg = "Cannot return a copy of the target"
expression = "a = 1 + 2"
with pytest.raises(ValueError, match=msg):
self.eval(expression, target=invalid_target, inplace=False)
@pytest.mark.parametrize("target", [1, "cat", [1, 2], np.array([]), (1, 3), {1: 2}])
def test_inplace_no_assignment(self, target):
expression = "1 + 2"
assert self.eval(expression, target=target, inplace=False) == 3
msg = "Cannot operate inplace if there is no assignment"
with pytest.raises(ValueError, match=msg):
self.eval(expression, target=target, inplace=True)
def test_basic_period_index_boolean_expression(self):
df = tm.makeCustomDataframe(2, 2, data_gen_f=f, c_idx_type="p", r_idx_type="i")
e = df < 2
r = self.eval("df < 2", local_dict={"df": df})
x = df < 2
tm.assert_frame_equal(r, e)
tm.assert_frame_equal(x, e)
def test_basic_period_index_subscript_expression(self):
df = tm.makeCustomDataframe(2, 2, data_gen_f=f, c_idx_type="p", r_idx_type="i")
r = self.eval("df[df < 2 + 3]", local_dict={"df": df})
e = df[df < 2 + 3]
tm.assert_frame_equal(r, e)
def test_nested_period_index_subscript_expression(self):
df = tm.makeCustomDataframe(2, 2, data_gen_f=f, c_idx_type="p", r_idx_type="i")
r = self.eval("df[df[df < 2] < 2] + df * 2", local_dict={"df": df})
e = df[df[df < 2] < 2] + df * 2
tm.assert_frame_equal(r, e)
def test_date_boolean(self):
df = DataFrame(randn(5, 3))
df["dates1"] = date_range("1/1/2012", periods=5)
res = self.eval(
"df.dates1 < 20130101",
local_dict={"df": df},
engine=self.engine,
parser=self.parser,
)
expec = df.dates1 < "20130101"
tm.assert_series_equal(res, expec, check_names=False)
def test_simple_in_ops(self):
if self.parser != "python":
res = pd.eval("1 in [1, 2]", engine=self.engine, parser=self.parser)
assert res
res = pd.eval("2 in (1, 2)", engine=self.engine, parser=self.parser)
assert res
res = pd.eval("3 in (1, 2)", engine=self.engine, parser=self.parser)
assert not res
res = pd.eval("3 not in (1, 2)", engine=self.engine, parser=self.parser)
assert res
res = pd.eval("[3] not in (1, 2)", engine=self.engine, parser=self.parser)
assert res
res = pd.eval("[3] in ([3], 2)", engine=self.engine, parser=self.parser)
assert res
res = pd.eval("[[3]] in [[[3]], 2]", engine=self.engine, parser=self.parser)
assert res
res = pd.eval("(3,) in [(3,), 2]", engine=self.engine, parser=self.parser)
assert res
res = pd.eval(
"(3,) not in [(3,), 2]", engine=self.engine, parser=self.parser
)
assert not res
res = pd.eval(
"[(3,)] in [[(3,)], 2]", engine=self.engine, parser=self.parser
)
assert res
else:
msg = "'In' nodes are not implemented"
with pytest.raises(NotImplementedError, match=msg):
pd.eval("1 in [1, 2]", engine=self.engine, parser=self.parser)
with pytest.raises(NotImplementedError, match=msg):
pd.eval("2 in (1, 2)", engine=self.engine, parser=self.parser)
with pytest.raises(NotImplementedError, match=msg):
pd.eval("3 in (1, 2)", engine=self.engine, parser=self.parser)
with pytest.raises(NotImplementedError, match=msg):
pd.eval(
"[(3,)] in (1, 2, [(3,)])", engine=self.engine, parser=self.parser
)
msg = "'NotIn' nodes are not implemented"
with pytest.raises(NotImplementedError, match=msg):
pd.eval("3 not in (1, 2)", engine=self.engine, parser=self.parser)
with pytest.raises(NotImplementedError, match=msg):
pd.eval(
"[3] not in (1, 2, [[3]])", engine=self.engine, parser=self.parser
)
@td.skip_if_no_ne
class TestOperationsNumExprPython(TestOperationsNumExprPandas):
@classmethod
def setup_class(cls):
super().setup_class()
cls.engine = "numexpr"
cls.parser = "python"
cls.arith_ops = expr._arith_ops_syms + expr._cmp_ops_syms
cls.arith_ops = filter(lambda x: x not in ("in", "not in"), cls.arith_ops)
def test_check_many_exprs(self):
a = 1 # noqa
expr = " * ".join("a" * 33)
expected = 1
res = pd.eval(expr, engine=self.engine, parser=self.parser)
assert res == expected
def test_fails_and(self):
df = DataFrame(np.random.randn(5, 3))
msg = "'BoolOp' nodes are not implemented"
with pytest.raises(NotImplementedError, match=msg):
pd.eval(
"df > 2 and df > 3",
local_dict={"df": df},
parser=self.parser,
engine=self.engine,
)
def test_fails_or(self):
df = DataFrame(np.random.randn(5, 3))
msg = "'BoolOp' nodes are not implemented"
with pytest.raises(NotImplementedError, match=msg):
pd.eval(
"df > 2 or df > 3",
local_dict={"df": df},
parser=self.parser,
engine=self.engine,
)
def test_fails_not(self):
df = DataFrame(np.random.randn(5, 3))
msg = "'Not' nodes are not implemented"
with pytest.raises(NotImplementedError, match=msg):
pd.eval(
"not df > 2",
local_dict={"df": df},
parser=self.parser,
engine=self.engine,
)
def test_fails_ampersand(self):
df = DataFrame(np.random.randn(5, 3)) # noqa
ex = "(df + 2)[df > 1] > 0 & (df > 0)"
msg = "cannot evaluate scalar only bool ops"
with pytest.raises(NotImplementedError, match=msg):
pd.eval(ex, parser=self.parser, engine=self.engine)
def test_fails_pipe(self):
df = DataFrame(np.random.randn(5, 3)) # noqa
ex = "(df + 2)[df > 1] > 0 | (df > 0)"
msg = "cannot evaluate scalar only bool ops"
with pytest.raises(NotImplementedError, match=msg):
pd.eval(ex, parser=self.parser, engine=self.engine)
def test_bool_ops_with_constants(self):
for op, lhs, rhs in product(
expr._bool_ops_syms, ("True", "False"), ("True", "False")
):
ex = f"{lhs} {op} {rhs}"
if op in ("and", "or"):
msg = "'BoolOp' nodes are not implemented"
with pytest.raises(NotImplementedError, match=msg):
self.eval(ex)
else:
res = self.eval(ex)
exp = eval(ex)
assert res == exp
def test_simple_bool_ops(self):
for op, lhs, rhs in product(expr._bool_ops_syms, (True, False), (True, False)):
ex = f"lhs {op} rhs"
if op in ("and", "or"):
msg = "'BoolOp' nodes are not implemented"
with pytest.raises(NotImplementedError, match=msg):
pd.eval(ex, engine=self.engine, parser=self.parser)
else:
res = pd.eval(ex, engine=self.engine, parser=self.parser)
exp = eval(ex)
assert res == exp
class TestOperationsPythonPython(TestOperationsNumExprPython):
@classmethod
def setup_class(cls):
super().setup_class()
cls.engine = cls.parser = "python"
cls.arith_ops = expr._arith_ops_syms + expr._cmp_ops_syms
cls.arith_ops = filter(lambda x: x not in ("in", "not in"), cls.arith_ops)
class TestOperationsPythonPandas(TestOperationsNumExprPandas):
@classmethod
def setup_class(cls):
super().setup_class()
cls.engine = "python"
cls.parser = "pandas"
cls.arith_ops = expr._arith_ops_syms + expr._cmp_ops_syms
@td.skip_if_no_ne
class TestMathPythonPython:
@classmethod
def setup_class(cls):
cls.engine = "python"
cls.parser = "pandas"
cls.unary_fns = _unary_math_ops
cls.binary_fns = _binary_math_ops
@classmethod
def teardown_class(cls):
del cls.engine, cls.parser
def eval(self, *args, **kwargs):
kwargs["engine"] = self.engine
kwargs["parser"] = self.parser
kwargs["level"] = kwargs.pop("level", 0) + 1
return pd.eval(*args, **kwargs)
def test_unary_functions(self, unary_fns_for_ne):
df = DataFrame({"a": np.random.randn(10)})
a = df.a
for fn in unary_fns_for_ne:
expr = f"{fn}(a)"
got = self.eval(expr)
with np.errstate(all="ignore"):
expect = getattr(np, fn)(a)
tm.assert_series_equal(got, expect, check_names=False)
def test_floor_and_ceil_functions_raise_error(self, ne_lt_2_6_9, unary_fns_for_ne):
for fn in ("floor", "ceil"):
msg = f'"{fn}" is not a supported function'
with pytest.raises(ValueError, match=msg):
expr = f"{fn}(100)"
self.eval(expr)
def test_binary_functions(self):
df = DataFrame({"a": np.random.randn(10), "b": np.random.randn(10)})
a = df.a
b = df.b
for fn in self.binary_fns:
expr = f"{fn}(a, b)"
got = self.eval(expr)
with np.errstate(all="ignore"):
expect = getattr(np, fn)(a, b)
tm.assert_almost_equal(got, expect, check_names=False)
def test_df_use_case(self):
df = DataFrame({"a": np.random.randn(10), "b": np.random.randn(10)})
df.eval(
"e = arctan2(sin(a), b)",
engine=self.engine,
parser=self.parser,
inplace=True,
)
got = df.e
expect = np.arctan2(np.sin(df.a), df.b)
tm.assert_series_equal(got, expect, check_names=False)
def test_df_arithmetic_subexpression(self):
df = DataFrame({"a": np.random.randn(10), "b": np.random.randn(10)})
df.eval("e = sin(a + b)", engine=self.engine, parser=self.parser, inplace=True)
got = df.e
expect = np.sin(df.a + df.b)
tm.assert_series_equal(got, expect, check_names=False)
def check_result_type(self, dtype, expect_dtype):
df = DataFrame({"a": np.random.randn(10).astype(dtype)})
assert df.a.dtype == dtype
df.eval("b = sin(a)", engine=self.engine, parser=self.parser, inplace=True)
got = df.b
expect = np.sin(df.a)
assert expect.dtype == got.dtype
assert expect_dtype == got.dtype
tm.assert_series_equal(got, expect, check_names=False)
def test_result_types(self):
self.check_result_type(np.int32, np.float64)
self.check_result_type(np.int64, np.float64)
self.check_result_type(np.float32, np.float32)
self.check_result_type(np.float64, np.float64)
@td.skip_if_windows
def test_result_complex128(self):
# xref https://github.com/pandas-dev/pandas/issues/12293
# this fails on Windows, apparently a floating point precision issue
# Did not test complex64 because DataFrame is converting it to
# complex128. Due to https://github.com/pandas-dev/pandas/issues/10952
self.check_result_type(np.complex128, np.complex128)
def test_undefined_func(self):
df = DataFrame({"a": np.random.randn(10)})
msg = '"mysin" is not a supported function'
with pytest.raises(ValueError, match=msg):
df.eval("mysin(a)", engine=self.engine, parser=self.parser)
def test_keyword_arg(self):
df = DataFrame({"a": np.random.randn(10)})
msg = 'Function "sin" does not support keyword arguments'
with pytest.raises(TypeError, match=msg):
df.eval("sin(x=a)", engine=self.engine, parser=self.parser)
class TestMathPythonPandas(TestMathPythonPython):
@classmethod
def setup_class(cls):
super().setup_class()
cls.engine = "python"
cls.parser = "pandas"
class TestMathNumExprPandas(TestMathPythonPython):
@classmethod
def setup_class(cls):
super().setup_class()
cls.engine = "numexpr"
cls.parser = "pandas"
class TestMathNumExprPython(TestMathPythonPython):
@classmethod
def setup_class(cls):
super().setup_class()
cls.engine = "numexpr"
cls.parser = "python"
_var_s = randn(10)
class TestScope:
def test_global_scope(self, engine, parser):
e = "_var_s * 2"
tm.assert_numpy_array_equal(
_var_s * 2, pd.eval(e, engine=engine, parser=parser)
)
def test_no_new_locals(self, engine, parser):
x = 1 # noqa
lcls = locals().copy()
pd.eval("x + 1", local_dict=lcls, engine=engine, parser=parser)
lcls2 = locals().copy()
lcls2.pop("lcls")
assert lcls == lcls2
def test_no_new_globals(self, engine, parser):
x = 1 # noqa
gbls = globals().copy()
pd.eval("x + 1", engine=engine, parser=parser)
gbls2 = globals().copy()
assert gbls == gbls2
@td.skip_if_no_ne
def test_invalid_engine():
msg = "Invalid engine 'asdf' passed"
with pytest.raises(KeyError, match=msg):
pd.eval("x + y", local_dict={"x": 1, "y": 2}, engine="asdf")
@td.skip_if_no_ne
def test_invalid_parser():
msg = "Invalid parser 'asdf' passed"
with pytest.raises(KeyError, match=msg):
pd.eval("x + y", local_dict={"x": 1, "y": 2}, parser="asdf")
_parsers: Dict[str, Type[BaseExprVisitor]] = {
"python": PythonExprVisitor,
"pytables": pytables.PyTablesExprVisitor,
"pandas": PandasExprVisitor,
}
@pytest.mark.parametrize("engine", _engines)
@pytest.mark.parametrize("parser", _parsers)
def test_disallowed_nodes(engine, parser):
VisitorClass = _parsers[parser]
uns_ops = VisitorClass.unsupported_nodes
inst = VisitorClass("x + 1", engine, parser)
for ops in uns_ops:
msg = "nodes are not implemented"
with pytest.raises(NotImplementedError, match=msg):
getattr(inst, ops)()
def test_syntax_error_exprs(engine, parser):
e = "s +"
with pytest.raises(SyntaxError, match="invalid syntax"):
pd.eval(e, engine=engine, parser=parser)
def test_name_error_exprs(engine, parser):
e = "s + t"
msg = "name 's' is not defined"
with pytest.raises(NameError, match=msg):
pd.eval(e, engine=engine, parser=parser)
def test_invalid_local_variable_reference(engine, parser):
a, b = 1, 2 # noqa
exprs = "a + @b", "@a + b", "@a + @b"
for _expr in exprs:
if parser != "pandas":
with pytest.raises(SyntaxError, match="The '@' prefix is only"):
pd.eval(_expr, engine=engine, parser=parser)
else:
with pytest.raises(SyntaxError, match="The '@' prefix is not"):
pd.eval(_expr, engine=engine, parser=parser)
def test_numexpr_builtin_raises(engine, parser):
sin, dotted_line = 1, 2
if engine == "numexpr":
msg = "Variables in expression .+"
with pytest.raises(NumExprClobberingError, match=msg):
pd.eval("sin + dotted_line", engine=engine, parser=parser)
else:
res = pd.eval("sin + dotted_line", engine=engine, parser=parser)
assert res == sin + dotted_line
def test_bad_resolver_raises(engine, parser):
cannot_resolve = 42, 3.0
with pytest.raises(TypeError, match="Resolver of type .+"):
pd.eval("1 + 2", resolvers=cannot_resolve, engine=engine, parser=parser)
def test_empty_string_raises(engine, parser):
# GH 13139
with pytest.raises(ValueError, match="expr cannot be an empty string"):
pd.eval("", engine=engine, parser=parser)
def test_more_than_one_expression_raises(engine, parser):
with pytest.raises(SyntaxError, match=("only a single expression is allowed")):
pd.eval("1 + 1; 2 + 2", engine=engine, parser=parser)
@pytest.mark.parametrize("cmp", ("and", "or"))
@pytest.mark.parametrize("lhs", (int, float))
@pytest.mark.parametrize("rhs", (int, float))
def test_bool_ops_fails_on_scalars(lhs, cmp, rhs, engine, parser):
gen = {int: lambda: np.random.randint(10), float: np.random.randn}
mid = gen[lhs]() # noqa
lhs = gen[lhs]() # noqa
rhs = gen[rhs]() # noqa
ex1 = f"lhs {cmp} mid {cmp} rhs"
ex2 = f"lhs {cmp} mid and mid {cmp} rhs"
ex3 = f"(lhs {cmp} mid) & (mid {cmp} rhs)"
for ex in (ex1, ex2, ex3):
msg = "cannot evaluate scalar only bool ops|'BoolOp' nodes are not"
with pytest.raises(NotImplementedError, match=msg):
pd.eval(ex, engine=engine, parser=parser)
@pytest.mark.parametrize(
"other",
[
"'x'",
pytest.param(
"...", marks=pytest.mark.xfail(not compat.PY38, reason="GH-28116")
),
],
)
def test_equals_various(other):
df = DataFrame({"A": ["a", "b", "c"]})
result = df.eval(f"A == {other}")
expected = Series([False, False, False], name="A")
if _USE_NUMEXPR:
# https://github.com/pandas-dev/pandas/issues/10239
# lose name with numexpr engine. Remove when that's fixed.
expected.name = None
tm.assert_series_equal(result, expected)
def test_inf(engine, parser):
s = "inf + 1"
expected = np.inf
result = pd.eval(s, engine=engine, parser=parser)
assert result == expected
def test_truediv_deprecated(engine, parser):
# GH#29182
match = "The `truediv` parameter in pd.eval is deprecated"
with tm.assert_produces_warning(FutureWarning) as m:
pd.eval("1+1", engine=engine, parser=parser, truediv=True)
assert len(m) == 1
assert match in str(m[0].message)
with tm.assert_produces_warning(FutureWarning) as m:
pd.eval("1+1", engine=engine, parser=parser, truediv=False)
assert len(m) == 1
assert match in str(m[0].message)
def test_negate_lt_eq_le(engine, parser):
df = pd.DataFrame([[0, 10], [1, 20]], columns=["cat", "count"])
expected = df[~(df.cat > 0)]
result = df.query("~(cat > 0)", engine=engine, parser=parser)
tm.assert_frame_equal(result, expected)
if parser == "python":
msg = "'Not' nodes are not implemented"
with pytest.raises(NotImplementedError, match=msg):
df.query("not (cat > 0)", engine=engine, parser=parser)
else:
result = df.query("not (cat > 0)", engine=engine, parser=parser)
tm.assert_frame_equal(result, expected)
class TestValidate:
def test_validate_bool_args(self):
invalid_values = [1, "True", [1, 2, 3], 5.0]
for value in invalid_values:
msg = 'For argument "inplace" expected type bool, received type'
with pytest.raises(ValueError, match=msg):
pd.eval("2+2", inplace=value)