1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/venv/lib/python3.9/site-packages/pandas/tests/arrays/test_period.py

439 lines
13 KiB

import numpy as np
import pytest
from pandas._libs.tslibs import iNaT
from pandas._libs.tslibs.period import IncompatibleFrequency
import pandas.util._test_decorators as td
from pandas.core.dtypes.base import registry
from pandas.core.dtypes.dtypes import PeriodDtype
import pandas as pd
import pandas._testing as tm
from pandas.core.arrays import PeriodArray, period_array
# ----------------------------------------------------------------------------
# Dtype
def test_registered():
assert PeriodDtype in registry.dtypes
result = registry.find("Period[D]")
expected = PeriodDtype("D")
assert result == expected
# ----------------------------------------------------------------------------
# period_array
@pytest.mark.parametrize(
"data, freq, expected",
[
([pd.Period("2017", "D")], None, [17167]),
([pd.Period("2017", "D")], "D", [17167]),
([2017], "D", [17167]),
(["2017"], "D", [17167]),
([pd.Period("2017", "D")], pd.tseries.offsets.Day(), [17167]),
([pd.Period("2017", "D"), None], None, [17167, iNaT]),
(pd.Series(pd.date_range("2017", periods=3)), None, [17167, 17168, 17169]),
(pd.date_range("2017", periods=3), None, [17167, 17168, 17169]),
(pd.period_range("2017", periods=4, freq="Q"), None, [188, 189, 190, 191]),
],
)
def test_period_array_ok(data, freq, expected):
result = period_array(data, freq=freq).asi8
expected = np.asarray(expected, dtype=np.int64)
tm.assert_numpy_array_equal(result, expected)
def test_period_array_readonly_object():
# https://github.com/pandas-dev/pandas/issues/25403
pa = period_array([pd.Period("2019-01-01")])
arr = np.asarray(pa, dtype="object")
arr.setflags(write=False)
result = period_array(arr)
tm.assert_period_array_equal(result, pa)
result = pd.Series(arr)
tm.assert_series_equal(result, pd.Series(pa))
result = pd.DataFrame({"A": arr})
tm.assert_frame_equal(result, pd.DataFrame({"A": pa}))
def test_from_datetime64_freq_changes():
# https://github.com/pandas-dev/pandas/issues/23438
arr = pd.date_range("2017", periods=3, freq="D")
result = PeriodArray._from_datetime64(arr, freq="M")
expected = period_array(["2017-01-01", "2017-01-01", "2017-01-01"], freq="M")
tm.assert_period_array_equal(result, expected)
@pytest.mark.parametrize(
"data, freq, msg",
[
(
[pd.Period("2017", "D"), pd.Period("2017", "A")],
None,
"Input has different freq",
),
([pd.Period("2017", "D")], "A", "Input has different freq"),
],
)
def test_period_array_raises(data, freq, msg):
with pytest.raises(IncompatibleFrequency, match=msg):
period_array(data, freq)
def test_period_array_non_period_series_raies():
ser = pd.Series([1, 2, 3])
with pytest.raises(TypeError, match="dtype"):
PeriodArray(ser, freq="D")
def test_period_array_freq_mismatch():
arr = period_array(["2000", "2001"], freq="D")
with pytest.raises(IncompatibleFrequency, match="freq"):
PeriodArray(arr, freq="M")
with pytest.raises(IncompatibleFrequency, match="freq"):
PeriodArray(arr, freq=pd.tseries.offsets.MonthEnd())
def test_asi8():
result = period_array(["2000", "2001", None], freq="D").asi8
expected = np.array([10957, 11323, iNaT])
tm.assert_numpy_array_equal(result, expected)
def test_take_raises():
arr = period_array(["2000", "2001"], freq="D")
with pytest.raises(IncompatibleFrequency, match="freq"):
arr.take([0, -1], allow_fill=True, fill_value=pd.Period("2000", freq="W"))
with pytest.raises(ValueError, match="foo"):
arr.take([0, -1], allow_fill=True, fill_value="foo")
@pytest.mark.parametrize("dtype", [int, np.int32, np.int64, "uint32", "uint64"])
def test_astype(dtype):
# We choose to ignore the sign and size of integers for
# Period/Datetime/Timedelta astype
arr = period_array(["2000", "2001", None], freq="D")
result = arr.astype(dtype)
if np.dtype(dtype).kind == "u":
expected_dtype = np.dtype("uint64")
else:
expected_dtype = np.dtype("int64")
expected = arr.astype(expected_dtype)
assert result.dtype == expected_dtype
tm.assert_numpy_array_equal(result, expected)
def test_astype_copies():
arr = period_array(["2000", "2001", None], freq="D")
result = arr.astype(np.int64, copy=False)
# Add the `.base`, since we now use `.asi8` which returns a view.
# We could maybe override it in PeriodArray to return ._data directly.
assert result.base is arr._data
result = arr.astype(np.int64, copy=True)
assert result is not arr._data
tm.assert_numpy_array_equal(result, arr._data.view("i8"))
def test_astype_categorical():
arr = period_array(["2000", "2001", "2001", None], freq="D")
result = arr.astype("category")
categories = pd.PeriodIndex(["2000", "2001"], freq="D")
expected = pd.Categorical.from_codes([0, 1, 1, -1], categories=categories)
tm.assert_categorical_equal(result, expected)
def test_astype_period():
arr = period_array(["2000", "2001", None], freq="D")
result = arr.astype(PeriodDtype("M"))
expected = period_array(["2000", "2001", None], freq="M")
tm.assert_period_array_equal(result, expected)
@pytest.mark.parametrize("other", ["datetime64[ns]", "timedelta64[ns]"])
def test_astype_datetime(other):
arr = period_array(["2000", "2001", None], freq="D")
# slice off the [ns] so that the regex matches.
with pytest.raises(TypeError, match=other[:-4]):
arr.astype(other)
def test_fillna_raises():
arr = period_array(["2000", "2001", "2002"], freq="D")
with pytest.raises(ValueError, match="Length"):
arr.fillna(arr[:2])
def test_fillna_copies():
arr = period_array(["2000", "2001", "2002"], freq="D")
result = arr.fillna(pd.Period("2000", "D"))
assert result is not arr
# ----------------------------------------------------------------------------
# setitem
@pytest.mark.parametrize(
"key, value, expected",
[
([0], pd.Period("2000", "D"), [10957, 1, 2]),
([0], None, [iNaT, 1, 2]),
([0], np.nan, [iNaT, 1, 2]),
([0, 1, 2], pd.Period("2000", "D"), [10957] * 3),
(
[0, 1, 2],
[pd.Period("2000", "D"), pd.Period("2001", "D"), pd.Period("2002", "D")],
[10957, 11323, 11688],
),
],
)
def test_setitem(key, value, expected):
arr = PeriodArray(np.arange(3), freq="D")
expected = PeriodArray(expected, freq="D")
arr[key] = value
tm.assert_period_array_equal(arr, expected)
def test_setitem_raises_incompatible_freq():
arr = PeriodArray(np.arange(3), freq="D")
with pytest.raises(IncompatibleFrequency, match="freq"):
arr[0] = pd.Period("2000", freq="A")
other = period_array(["2000", "2001"], freq="A")
with pytest.raises(IncompatibleFrequency, match="freq"):
arr[[0, 1]] = other
def test_setitem_raises_length():
arr = PeriodArray(np.arange(3), freq="D")
with pytest.raises(ValueError, match="length"):
arr[[0, 1]] = [pd.Period("2000", freq="D")]
def test_setitem_raises_type():
arr = PeriodArray(np.arange(3), freq="D")
with pytest.raises(TypeError, match="int"):
arr[0] = 1
# ----------------------------------------------------------------------------
# Ops
def test_sub_period():
arr = period_array(["2000", "2001"], freq="D")
other = pd.Period("2000", freq="M")
with pytest.raises(IncompatibleFrequency, match="freq"):
arr - other
# ----------------------------------------------------------------------------
# Methods
@pytest.mark.parametrize(
"other",
[pd.Period("2000", freq="H"), period_array(["2000", "2001", "2000"], freq="H")],
)
def test_where_different_freq_raises(other):
ser = pd.Series(period_array(["2000", "2001", "2002"], freq="D"))
cond = np.array([True, False, True])
with pytest.raises(IncompatibleFrequency, match="freq"):
ser.where(cond, other)
# ----------------------------------------------------------------------------
# Printing
def test_repr_small():
arr = period_array(["2000", "2001"], freq="D")
result = str(arr)
expected = (
"<PeriodArray>\n['2000-01-01', '2001-01-01']\nLength: 2, dtype: period[D]"
)
assert result == expected
def test_repr_large():
arr = period_array(["2000", "2001"] * 500, freq="D")
result = str(arr)
expected = (
"<PeriodArray>\n"
"['2000-01-01', '2001-01-01', '2000-01-01', '2001-01-01', "
"'2000-01-01',\n"
" '2001-01-01', '2000-01-01', '2001-01-01', '2000-01-01', "
"'2001-01-01',\n"
" ...\n"
" '2000-01-01', '2001-01-01', '2000-01-01', '2001-01-01', "
"'2000-01-01',\n"
" '2001-01-01', '2000-01-01', '2001-01-01', '2000-01-01', "
"'2001-01-01']\n"
"Length: 1000, dtype: period[D]"
)
assert result == expected
# ----------------------------------------------------------------------------
# Reductions
class TestReductions:
def test_min_max(self):
arr = period_array(
[
"2000-01-03",
"2000-01-03",
"NaT",
"2000-01-02",
"2000-01-05",
"2000-01-04",
],
freq="D",
)
result = arr.min()
expected = pd.Period("2000-01-02", freq="D")
assert result == expected
result = arr.max()
expected = pd.Period("2000-01-05", freq="D")
assert result == expected
result = arr.min(skipna=False)
assert result is pd.NaT
result = arr.max(skipna=False)
assert result is pd.NaT
@pytest.mark.parametrize("skipna", [True, False])
def test_min_max_empty(self, skipna):
arr = period_array([], freq="D")
result = arr.min(skipna=skipna)
assert result is pd.NaT
result = arr.max(skipna=skipna)
assert result is pd.NaT
# ----------------------------------------------------------------------------
# Arrow interaction
pyarrow_skip = pyarrow_skip = td.skip_if_no("pyarrow", min_version="0.15.1.dev")
@pyarrow_skip
def test_arrow_extension_type():
from pandas.core.arrays._arrow_utils import ArrowPeriodType
p1 = ArrowPeriodType("D")
p2 = ArrowPeriodType("D")
p3 = ArrowPeriodType("M")
assert p1.freq == "D"
assert p1 == p2
assert not p1 == p3
assert hash(p1) == hash(p2)
assert not hash(p1) == hash(p3)
@pyarrow_skip
@pytest.mark.parametrize(
"data, freq",
[
(pd.date_range("2017", periods=3), "D"),
(pd.date_range("2017", periods=3, freq="A"), "A-DEC"),
],
)
def test_arrow_array(data, freq):
import pyarrow as pa
from pandas.core.arrays._arrow_utils import ArrowPeriodType
periods = period_array(data, freq=freq)
result = pa.array(periods)
assert isinstance(result.type, ArrowPeriodType)
assert result.type.freq == freq
expected = pa.array(periods.asi8, type="int64")
assert result.storage.equals(expected)
# convert to its storage type
result = pa.array(periods, type=pa.int64())
assert result.equals(expected)
# unsupported conversions
msg = "Not supported to convert PeriodArray to 'double' type"
with pytest.raises(TypeError, match=msg):
pa.array(periods, type="float64")
with pytest.raises(TypeError, match="different 'freq'"):
pa.array(periods, type=ArrowPeriodType("T"))
@pyarrow_skip
def test_arrow_array_missing():
import pyarrow as pa
from pandas.core.arrays._arrow_utils import ArrowPeriodType
arr = PeriodArray([1, 2, 3], freq="D")
arr[1] = pd.NaT
result = pa.array(arr)
assert isinstance(result.type, ArrowPeriodType)
assert result.type.freq == "D"
expected = pa.array([1, None, 3], type="int64")
assert result.storage.equals(expected)
@pyarrow_skip
def test_arrow_table_roundtrip():
import pyarrow as pa
from pandas.core.arrays._arrow_utils import ArrowPeriodType
arr = PeriodArray([1, 2, 3], freq="D")
arr[1] = pd.NaT
df = pd.DataFrame({"a": arr})
table = pa.table(df)
assert isinstance(table.field("a").type, ArrowPeriodType)
result = table.to_pandas()
assert isinstance(result["a"].dtype, PeriodDtype)
tm.assert_frame_equal(result, df)
table2 = pa.concat_tables([table, table])
result = table2.to_pandas()
expected = pd.concat([df, df], ignore_index=True)
tm.assert_frame_equal(result, expected)
@pyarrow_skip
def test_arrow_table_roundtrip_without_metadata():
import pyarrow as pa
arr = PeriodArray([1, 2, 3], freq="H")
arr[1] = pd.NaT
df = pd.DataFrame({"a": arr})
table = pa.table(df)
# remove the metadata
table = table.replace_schema_metadata()
assert table.schema.metadata is None
result = table.to_pandas()
assert isinstance(result["a"].dtype, PeriodDtype)
tm.assert_frame_equal(result, df)