1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/venv/lib/python3.9/site-packages/pandas/tests/arrays/test_datetimelike.py

1043 lines
36 KiB

from typing import Type, Union
import numpy as np
import pytest
from pandas._libs import OutOfBoundsDatetime
from pandas.compat.numpy import _np_version_under1p18
import pandas as pd
import pandas._testing as tm
from pandas.core.arrays import DatetimeArray, PeriodArray, TimedeltaArray
from pandas.core.indexes.datetimes import DatetimeIndex
from pandas.core.indexes.period import Period, PeriodIndex
from pandas.core.indexes.timedeltas import TimedeltaIndex
# TODO: more freq variants
@pytest.fixture(params=["D", "B", "W", "M", "Q", "Y"])
def period_index(request):
"""
A fixture to provide PeriodIndex objects with different frequencies.
Most PeriodArray behavior is already tested in PeriodIndex tests,
so here we just test that the PeriodArray behavior matches
the PeriodIndex behavior.
"""
freqstr = request.param
# TODO: non-monotone indexes; NaTs, different start dates
pi = pd.period_range(start=pd.Timestamp("2000-01-01"), periods=100, freq=freqstr)
return pi
@pytest.fixture(params=["D", "B", "W", "M", "Q", "Y"])
def datetime_index(request):
"""
A fixture to provide DatetimeIndex objects with different frequencies.
Most DatetimeArray behavior is already tested in DatetimeIndex tests,
so here we just test that the DatetimeArray behavior matches
the DatetimeIndex behavior.
"""
freqstr = request.param
# TODO: non-monotone indexes; NaTs, different start dates, timezones
dti = pd.date_range(start=pd.Timestamp("2000-01-01"), periods=100, freq=freqstr)
return dti
@pytest.fixture
def timedelta_index(request):
"""
A fixture to provide TimedeltaIndex objects with different frequencies.
Most TimedeltaArray behavior is already tested in TimedeltaIndex tests,
so here we just test that the TimedeltaArray behavior matches
the TimedeltaIndex behavior.
"""
# TODO: flesh this out
return pd.TimedeltaIndex(["1 Day", "3 Hours", "NaT"])
class SharedTests:
index_cls: Type[Union[DatetimeIndex, PeriodIndex, TimedeltaIndex]]
@pytest.fixture
def arr1d(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls(data, freq="D")
return arr
def test_compare_len1_raises(self):
# make sure we raise when comparing with different lengths, specific
# to the case where one has length-1, which numpy would broadcast
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls._simple_new(data, freq="D")
idx = self.index_cls(arr)
with pytest.raises(ValueError, match="Lengths must match"):
arr == arr[:1]
# test the index classes while we're at it, GH#23078
with pytest.raises(ValueError, match="Lengths must match"):
idx <= idx[[0]]
@pytest.mark.parametrize("reverse", [True, False])
@pytest.mark.parametrize("as_index", [True, False])
def test_compare_categorical_dtype(self, arr1d, as_index, reverse, ordered):
other = pd.Categorical(arr1d, ordered=ordered)
if as_index:
other = pd.CategoricalIndex(other)
left, right = arr1d, other
if reverse:
left, right = right, left
ones = np.ones(arr1d.shape, dtype=bool)
zeros = ~ones
result = left == right
tm.assert_numpy_array_equal(result, ones)
result = left != right
tm.assert_numpy_array_equal(result, zeros)
if not reverse and not as_index:
# Otherwise Categorical raises TypeError bc it is not ordered
# TODO: we should probably get the same behavior regardless?
result = left < right
tm.assert_numpy_array_equal(result, zeros)
result = left <= right
tm.assert_numpy_array_equal(result, ones)
result = left > right
tm.assert_numpy_array_equal(result, zeros)
result = left >= right
tm.assert_numpy_array_equal(result, ones)
def test_take(self):
data = np.arange(100, dtype="i8") * 24 * 3600 * 10 ** 9
np.random.shuffle(data)
arr = self.array_cls._simple_new(data, freq="D")
idx = self.index_cls._simple_new(arr)
takers = [1, 4, 94]
result = arr.take(takers)
expected = idx.take(takers)
tm.assert_index_equal(self.index_cls(result), expected)
takers = np.array([1, 4, 94])
result = arr.take(takers)
expected = idx.take(takers)
tm.assert_index_equal(self.index_cls(result), expected)
@pytest.mark.parametrize("fill_value", [2, 2.0, pd.Timestamp.now().time])
def test_take_fill_raises(self, fill_value):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls._simple_new(data, freq="D")
msg = f"'fill_value' should be a {self.dtype}. Got '{fill_value}'"
with pytest.raises(ValueError, match=msg):
arr.take([0, 1], allow_fill=True, fill_value=fill_value)
def test_take_fill(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls._simple_new(data, freq="D")
result = arr.take([-1, 1], allow_fill=True, fill_value=None)
assert result[0] is pd.NaT
result = arr.take([-1, 1], allow_fill=True, fill_value=np.nan)
assert result[0] is pd.NaT
result = arr.take([-1, 1], allow_fill=True, fill_value=pd.NaT)
assert result[0] is pd.NaT
def test_concat_same_type(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls._simple_new(data, freq="D")
idx = self.index_cls(arr)
idx = idx.insert(0, pd.NaT)
arr = self.array_cls(idx)
result = arr._concat_same_type([arr[:-1], arr[1:], arr])
arr2 = arr.astype(object)
expected = self.index_cls(np.concatenate([arr2[:-1], arr2[1:], arr2]), None)
tm.assert_index_equal(self.index_cls(result), expected)
def test_unbox_scalar(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls(data, freq="D")
result = arr._unbox_scalar(arr[0])
assert isinstance(result, int)
result = arr._unbox_scalar(pd.NaT)
assert isinstance(result, int)
msg = f"'value' should be a {self.dtype.__name__}."
with pytest.raises(ValueError, match=msg):
arr._unbox_scalar("foo")
def test_check_compatible_with(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls(data, freq="D")
arr._check_compatible_with(arr[0])
arr._check_compatible_with(arr[:1])
arr._check_compatible_with(pd.NaT)
def test_scalar_from_string(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls(data, freq="D")
result = arr._scalar_from_string(str(arr[0]))
assert result == arr[0]
def test_reduce_invalid(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls(data, freq="D")
with pytest.raises(TypeError, match="cannot perform"):
arr._reduce("not a method")
@pytest.mark.parametrize("method", ["pad", "backfill"])
def test_fillna_method_doesnt_change_orig(self, method):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls(data, freq="D")
arr[4] = pd.NaT
fill_value = arr[3] if method == "pad" else arr[5]
result = arr.fillna(method=method)
assert result[4] == fill_value
# check that the original was not changed
assert arr[4] is pd.NaT
def test_searchsorted(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls(data, freq="D")
# scalar
result = arr.searchsorted(arr[1])
assert result == 1
result = arr.searchsorted(arr[2], side="right")
assert result == 3
# own-type
result = arr.searchsorted(arr[1:3])
expected = np.array([1, 2], dtype=np.intp)
tm.assert_numpy_array_equal(result, expected)
result = arr.searchsorted(arr[1:3], side="right")
expected = np.array([2, 3], dtype=np.intp)
tm.assert_numpy_array_equal(result, expected)
# Following numpy convention, NaT goes at the beginning
# (unlike NaN which goes at the end)
result = arr.searchsorted(pd.NaT)
assert result == 0
def test_getitem_2d(self, arr1d):
# 2d slicing on a 1D array
expected = type(arr1d)(arr1d._data[:, np.newaxis], dtype=arr1d.dtype)
result = arr1d[:, np.newaxis]
tm.assert_equal(result, expected)
# Lookup on a 2D array
arr2d = expected
expected = type(arr2d)(arr2d._data[:3, 0], dtype=arr2d.dtype)
result = arr2d[:3, 0]
tm.assert_equal(result, expected)
# Scalar lookup
result = arr2d[-1, 0]
expected = arr1d[-1]
assert result == expected
def test_setitem(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls(data, freq="D")
arr[0] = arr[1]
expected = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
expected[0] = expected[1]
tm.assert_numpy_array_equal(arr.asi8, expected)
arr[:2] = arr[-2:]
expected[:2] = expected[-2:]
tm.assert_numpy_array_equal(arr.asi8, expected)
def test_setitem_str_array(self, arr1d):
if isinstance(arr1d, DatetimeArray) and arr1d.tz is not None:
pytest.xfail(reason="timezone comparisons inconsistent")
expected = arr1d.copy()
expected[[0, 1]] = arr1d[-2:]
arr1d[:2] = [str(x) for x in arr1d[-2:]]
tm.assert_equal(arr1d, expected)
@pytest.mark.parametrize("as_index", [True, False])
def test_setitem_categorical(self, arr1d, as_index):
expected = arr1d.copy()[::-1]
if not isinstance(expected, PeriodArray):
expected = expected._with_freq(None)
cat = pd.Categorical(arr1d)
if as_index:
cat = pd.CategoricalIndex(cat)
arr1d[:] = cat[::-1]
tm.assert_equal(arr1d, expected)
def test_setitem_raises(self):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls(data, freq="D")
val = arr[0]
with pytest.raises(IndexError, match="index 12 is out of bounds"):
arr[12] = val
with pytest.raises(TypeError, match="'value' should be a.* 'object'"):
arr[0] = object()
@pytest.mark.parametrize("box", [list, np.array, pd.Index, pd.Series])
def test_setitem_numeric_raises(self, arr1d, box):
# We dont case e.g. int64 to our own dtype for setitem
msg = "requires compatible dtype"
with pytest.raises(TypeError, match=msg):
arr1d[:2] = box([0, 1])
with pytest.raises(TypeError, match=msg):
arr1d[:2] = box([0.0, 1.0])
def test_inplace_arithmetic(self):
# GH#24115 check that iadd and isub are actually in-place
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls(data, freq="D")
expected = arr + pd.Timedelta(days=1)
arr += pd.Timedelta(days=1)
tm.assert_equal(arr, expected)
expected = arr - pd.Timedelta(days=1)
arr -= pd.Timedelta(days=1)
tm.assert_equal(arr, expected)
def test_shift_fill_int_deprecated(self):
# GH#31971
data = np.arange(10, dtype="i8") * 24 * 3600 * 10 ** 9
arr = self.array_cls(data, freq="D")
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
result = arr.shift(1, fill_value=1)
expected = arr.copy()
if self.array_cls is PeriodArray:
fill_val = PeriodArray._scalar_type._from_ordinal(1, freq=arr.freq)
else:
fill_val = arr._scalar_type(1)
expected[0] = fill_val
expected[1:] = arr[:-1]
tm.assert_equal(result, expected)
class TestDatetimeArray(SharedTests):
index_cls = pd.DatetimeIndex
array_cls = DatetimeArray
dtype = pd.Timestamp
@pytest.fixture
def arr1d(self, tz_naive_fixture):
tz = tz_naive_fixture
dti = pd.date_range("2016-01-01 01:01:00", periods=3, freq="H", tz=tz)
dta = dti._data
return dta
def test_round(self, tz_naive_fixture):
# GH#24064
tz = tz_naive_fixture
dti = pd.date_range("2016-01-01 01:01:00", periods=3, freq="H", tz=tz)
result = dti.round(freq="2T")
expected = dti - pd.Timedelta(minutes=1)
expected = expected._with_freq(None)
tm.assert_index_equal(result, expected)
dta = dti._data
result = dta.round(freq="2T")
expected = expected._data._with_freq(None)
tm.assert_datetime_array_equal(result, expected)
def test_array_interface(self, datetime_index):
arr = DatetimeArray(datetime_index)
# default asarray gives the same underlying data (for tz naive)
result = np.asarray(arr)
expected = arr._data
assert result is expected
tm.assert_numpy_array_equal(result, expected)
result = np.array(arr, copy=False)
assert result is expected
tm.assert_numpy_array_equal(result, expected)
# specifying M8[ns] gives the same result as default
result = np.asarray(arr, dtype="datetime64[ns]")
expected = arr._data
assert result is expected
tm.assert_numpy_array_equal(result, expected)
result = np.array(arr, dtype="datetime64[ns]", copy=False)
assert result is expected
tm.assert_numpy_array_equal(result, expected)
result = np.array(arr, dtype="datetime64[ns]")
assert result is not expected
tm.assert_numpy_array_equal(result, expected)
# to object dtype
result = np.asarray(arr, dtype=object)
expected = np.array(list(arr), dtype=object)
tm.assert_numpy_array_equal(result, expected)
# to other dtype always copies
result = np.asarray(arr, dtype="int64")
assert result is not arr.asi8
assert not np.may_share_memory(arr, result)
expected = arr.asi8.copy()
tm.assert_numpy_array_equal(result, expected)
# other dtypes handled by numpy
for dtype in ["float64", str]:
result = np.asarray(arr, dtype=dtype)
expected = np.asarray(arr).astype(dtype)
tm.assert_numpy_array_equal(result, expected)
def test_array_object_dtype(self, tz_naive_fixture):
# GH#23524
tz = tz_naive_fixture
dti = pd.date_range("2016-01-01", periods=3, tz=tz)
arr = DatetimeArray(dti)
expected = np.array(list(dti))
result = np.array(arr, dtype=object)
tm.assert_numpy_array_equal(result, expected)
# also test the DatetimeIndex method while we're at it
result = np.array(dti, dtype=object)
tm.assert_numpy_array_equal(result, expected)
def test_array_tz(self, tz_naive_fixture):
# GH#23524
tz = tz_naive_fixture
dti = pd.date_range("2016-01-01", periods=3, tz=tz)
arr = DatetimeArray(dti)
expected = dti.asi8.view("M8[ns]")
result = np.array(arr, dtype="M8[ns]")
tm.assert_numpy_array_equal(result, expected)
result = np.array(arr, dtype="datetime64[ns]")
tm.assert_numpy_array_equal(result, expected)
# check that we are not making copies when setting copy=False
result = np.array(arr, dtype="M8[ns]", copy=False)
assert result.base is expected.base
assert result.base is not None
result = np.array(arr, dtype="datetime64[ns]", copy=False)
assert result.base is expected.base
assert result.base is not None
def test_array_i8_dtype(self, tz_naive_fixture):
tz = tz_naive_fixture
dti = pd.date_range("2016-01-01", periods=3, tz=tz)
arr = DatetimeArray(dti)
expected = dti.asi8
result = np.array(arr, dtype="i8")
tm.assert_numpy_array_equal(result, expected)
result = np.array(arr, dtype=np.int64)
tm.assert_numpy_array_equal(result, expected)
# check that we are still making copies when setting copy=False
result = np.array(arr, dtype="i8", copy=False)
assert result.base is not expected.base
assert result.base is None
def test_from_array_keeps_base(self):
# Ensure that DatetimeArray._data.base isn't lost.
arr = np.array(["2000-01-01", "2000-01-02"], dtype="M8[ns]")
dta = DatetimeArray(arr)
assert dta._data is arr
dta = DatetimeArray(arr[:0])
assert dta._data.base is arr
def test_from_dti(self, tz_naive_fixture):
tz = tz_naive_fixture
dti = pd.date_range("2016-01-01", periods=3, tz=tz)
arr = DatetimeArray(dti)
assert list(dti) == list(arr)
# Check that Index.__new__ knows what to do with DatetimeArray
dti2 = pd.Index(arr)
assert isinstance(dti2, pd.DatetimeIndex)
assert list(dti2) == list(arr)
def test_astype_object(self, tz_naive_fixture):
tz = tz_naive_fixture
dti = pd.date_range("2016-01-01", periods=3, tz=tz)
arr = DatetimeArray(dti)
asobj = arr.astype("O")
assert isinstance(asobj, np.ndarray)
assert asobj.dtype == "O"
assert list(asobj) == list(dti)
@pytest.mark.parametrize("freqstr", ["D", "B", "W", "M", "Q", "Y"])
def test_to_perioddelta(self, datetime_index, freqstr):
# GH#23113
dti = datetime_index
arr = DatetimeArray(dti)
with tm.assert_produces_warning(FutureWarning):
# Deprecation GH#34853
expected = dti.to_perioddelta(freq=freqstr)
with tm.assert_produces_warning(FutureWarning, check_stacklevel=False):
# stacklevel is chosen to be "correct" for DatetimeIndex, not
# DatetimeArray
result = arr.to_perioddelta(freq=freqstr)
assert isinstance(result, TimedeltaArray)
# placeholder until these become actual EA subclasses and we can use
# an EA-specific tm.assert_ function
tm.assert_index_equal(pd.Index(result), pd.Index(expected))
@pytest.mark.parametrize("freqstr", ["D", "B", "W", "M", "Q", "Y"])
def test_to_period(self, datetime_index, freqstr):
dti = datetime_index
arr = DatetimeArray(dti)
expected = dti.to_period(freq=freqstr)
result = arr.to_period(freq=freqstr)
assert isinstance(result, PeriodArray)
# placeholder until these become actual EA subclasses and we can use
# an EA-specific tm.assert_ function
tm.assert_index_equal(pd.Index(result), pd.Index(expected))
@pytest.mark.parametrize("propname", pd.DatetimeIndex._bool_ops)
def test_bool_properties(self, datetime_index, propname):
# in this case _bool_ops is just `is_leap_year`
dti = datetime_index
arr = DatetimeArray(dti)
assert dti.freq == arr.freq
result = getattr(arr, propname)
expected = np.array(getattr(dti, propname), dtype=result.dtype)
tm.assert_numpy_array_equal(result, expected)
@pytest.mark.parametrize("propname", pd.DatetimeIndex._field_ops)
def test_int_properties(self, datetime_index, propname):
if propname in ["week", "weekofyear"]:
# GH#33595 Deprecate week and weekofyear
return
dti = datetime_index
arr = DatetimeArray(dti)
result = getattr(arr, propname)
expected = np.array(getattr(dti, propname), dtype=result.dtype)
tm.assert_numpy_array_equal(result, expected)
def test_take_fill_valid(self, datetime_index, tz_naive_fixture):
dti = datetime_index.tz_localize(tz_naive_fixture)
arr = DatetimeArray(dti)
now = pd.Timestamp.now().tz_localize(dti.tz)
result = arr.take([-1, 1], allow_fill=True, fill_value=now)
assert result[0] == now
msg = f"'fill_value' should be a {self.dtype}. Got '0 days 00:00:00'."
with pytest.raises(ValueError, match=msg):
# fill_value Timedelta invalid
arr.take([-1, 1], allow_fill=True, fill_value=now - now)
msg = f"'fill_value' should be a {self.dtype}. Got '2014Q1'."
with pytest.raises(ValueError, match=msg):
# fill_value Period invalid
arr.take([-1, 1], allow_fill=True, fill_value=pd.Period("2014Q1"))
tz = None if dti.tz is not None else "US/Eastern"
now = pd.Timestamp.now().tz_localize(tz)
msg = "Cannot compare tz-naive and tz-aware datetime-like objects"
with pytest.raises(TypeError, match=msg):
# Timestamp with mismatched tz-awareness
arr.take([-1, 1], allow_fill=True, fill_value=now)
value = pd.NaT.value
msg = f"'fill_value' should be a {self.dtype}. Got '{value}'."
with pytest.raises(ValueError, match=msg):
# require NaT, not iNaT, as it could be confused with an integer
arr.take([-1, 1], allow_fill=True, fill_value=value)
value = np.timedelta64("NaT", "ns")
msg = f"'fill_value' should be a {self.dtype}. Got '{str(value)}'."
with pytest.raises(ValueError, match=msg):
# require appropriate-dtype if we have a NA value
arr.take([-1, 1], allow_fill=True, fill_value=value)
def test_concat_same_type_invalid(self, datetime_index):
# different timezones
dti = datetime_index
arr = DatetimeArray(dti)
if arr.tz is None:
other = arr.tz_localize("UTC")
else:
other = arr.tz_localize(None)
with pytest.raises(ValueError, match="to_concat must have the same"):
arr._concat_same_type([arr, other])
def test_concat_same_type_different_freq(self):
# we *can* concatenate DTI with different freqs.
a = DatetimeArray(pd.date_range("2000", periods=2, freq="D", tz="US/Central"))
b = DatetimeArray(pd.date_range("2000", periods=2, freq="H", tz="US/Central"))
result = DatetimeArray._concat_same_type([a, b])
expected = DatetimeArray(
pd.to_datetime(
[
"2000-01-01 00:00:00",
"2000-01-02 00:00:00",
"2000-01-01 00:00:00",
"2000-01-01 01:00:00",
]
).tz_localize("US/Central")
)
tm.assert_datetime_array_equal(result, expected)
def test_strftime(self, datetime_index):
arr = DatetimeArray(datetime_index)
result = arr.strftime("%Y %b")
expected = np.array([ts.strftime("%Y %b") for ts in arr], dtype=object)
tm.assert_numpy_array_equal(result, expected)
def test_strftime_nat(self):
# GH 29578
arr = DatetimeArray(DatetimeIndex(["2019-01-01", pd.NaT]))
result = arr.strftime("%Y-%m-%d")
expected = np.array(["2019-01-01", np.nan], dtype=object)
tm.assert_numpy_array_equal(result, expected)
class TestTimedeltaArray(SharedTests):
index_cls = pd.TimedeltaIndex
array_cls = TimedeltaArray
dtype = pd.Timedelta
def test_from_tdi(self):
tdi = pd.TimedeltaIndex(["1 Day", "3 Hours"])
arr = TimedeltaArray(tdi)
assert list(arr) == list(tdi)
# Check that Index.__new__ knows what to do with TimedeltaArray
tdi2 = pd.Index(arr)
assert isinstance(tdi2, pd.TimedeltaIndex)
assert list(tdi2) == list(arr)
def test_astype_object(self):
tdi = pd.TimedeltaIndex(["1 Day", "3 Hours"])
arr = TimedeltaArray(tdi)
asobj = arr.astype("O")
assert isinstance(asobj, np.ndarray)
assert asobj.dtype == "O"
assert list(asobj) == list(tdi)
def test_to_pytimedelta(self, timedelta_index):
tdi = timedelta_index
arr = TimedeltaArray(tdi)
expected = tdi.to_pytimedelta()
result = arr.to_pytimedelta()
tm.assert_numpy_array_equal(result, expected)
def test_total_seconds(self, timedelta_index):
tdi = timedelta_index
arr = TimedeltaArray(tdi)
expected = tdi.total_seconds()
result = arr.total_seconds()
tm.assert_numpy_array_equal(result, expected.values)
@pytest.mark.parametrize("propname", pd.TimedeltaIndex._field_ops)
def test_int_properties(self, timedelta_index, propname):
tdi = timedelta_index
arr = TimedeltaArray(tdi)
result = getattr(arr, propname)
expected = np.array(getattr(tdi, propname), dtype=result.dtype)
tm.assert_numpy_array_equal(result, expected)
def test_array_interface(self, timedelta_index):
arr = TimedeltaArray(timedelta_index)
# default asarray gives the same underlying data
result = np.asarray(arr)
expected = arr._data
assert result is expected
tm.assert_numpy_array_equal(result, expected)
result = np.array(arr, copy=False)
assert result is expected
tm.assert_numpy_array_equal(result, expected)
# specifying m8[ns] gives the same result as default
result = np.asarray(arr, dtype="timedelta64[ns]")
expected = arr._data
assert result is expected
tm.assert_numpy_array_equal(result, expected)
result = np.array(arr, dtype="timedelta64[ns]", copy=False)
assert result is expected
tm.assert_numpy_array_equal(result, expected)
result = np.array(arr, dtype="timedelta64[ns]")
assert result is not expected
tm.assert_numpy_array_equal(result, expected)
# to object dtype
result = np.asarray(arr, dtype=object)
expected = np.array(list(arr), dtype=object)
tm.assert_numpy_array_equal(result, expected)
# to other dtype always copies
result = np.asarray(arr, dtype="int64")
assert result is not arr.asi8
assert not np.may_share_memory(arr, result)
expected = arr.asi8.copy()
tm.assert_numpy_array_equal(result, expected)
# other dtypes handled by numpy
for dtype in ["float64", str]:
result = np.asarray(arr, dtype=dtype)
expected = np.asarray(arr).astype(dtype)
tm.assert_numpy_array_equal(result, expected)
def test_take_fill_valid(self, timedelta_index):
tdi = timedelta_index
arr = TimedeltaArray(tdi)
td1 = pd.Timedelta(days=1)
result = arr.take([-1, 1], allow_fill=True, fill_value=td1)
assert result[0] == td1
now = pd.Timestamp.now()
value = now
msg = f"'fill_value' should be a {self.dtype}. Got '{value}'."
with pytest.raises(ValueError, match=msg):
# fill_value Timestamp invalid
arr.take([0, 1], allow_fill=True, fill_value=value)
value = now.to_period("D")
msg = f"'fill_value' should be a {self.dtype}. Got '{value}'."
with pytest.raises(ValueError, match=msg):
# fill_value Period invalid
arr.take([0, 1], allow_fill=True, fill_value=value)
value = np.datetime64("NaT", "ns")
msg = f"'fill_value' should be a {self.dtype}. Got '{str(value)}'."
with pytest.raises(ValueError, match=msg):
# require appropriate-dtype if we have a NA value
arr.take([-1, 1], allow_fill=True, fill_value=value)
class TestPeriodArray(SharedTests):
index_cls = pd.PeriodIndex
array_cls = PeriodArray
dtype = pd.Period
@pytest.fixture
def arr1d(self, period_index):
return period_index._data
def test_from_pi(self, period_index):
pi = period_index
arr = PeriodArray(pi)
assert list(arr) == list(pi)
# Check that Index.__new__ knows what to do with PeriodArray
pi2 = pd.Index(arr)
assert isinstance(pi2, pd.PeriodIndex)
assert list(pi2) == list(arr)
def test_astype_object(self, period_index):
pi = period_index
arr = PeriodArray(pi)
asobj = arr.astype("O")
assert isinstance(asobj, np.ndarray)
assert asobj.dtype == "O"
assert list(asobj) == list(pi)
def test_take_fill_valid(self, period_index):
pi = period_index
arr = PeriodArray(pi)
value = pd.NaT.value
msg = f"'fill_value' should be a {self.dtype}. Got '{value}'."
with pytest.raises(ValueError, match=msg):
# require NaT, not iNaT, as it could be confused with an integer
arr.take([-1, 1], allow_fill=True, fill_value=value)
value = np.timedelta64("NaT", "ns")
msg = f"'fill_value' should be a {self.dtype}. Got '{str(value)}'."
with pytest.raises(ValueError, match=msg):
# require appropriate-dtype if we have a NA value
arr.take([-1, 1], allow_fill=True, fill_value=value)
@pytest.mark.parametrize("how", ["S", "E"])
def test_to_timestamp(self, how, period_index):
pi = period_index
arr = PeriodArray(pi)
expected = DatetimeArray(pi.to_timestamp(how=how))
result = arr.to_timestamp(how=how)
assert isinstance(result, DatetimeArray)
# placeholder until these become actual EA subclasses and we can use
# an EA-specific tm.assert_ function
tm.assert_index_equal(pd.Index(result), pd.Index(expected))
def test_to_timestamp_out_of_bounds(self):
# GH#19643 previously overflowed silently
pi = pd.period_range("1500", freq="Y", periods=3)
msg = "Out of bounds nanosecond timestamp: 1500-01-01 00:00:00"
with pytest.raises(OutOfBoundsDatetime, match=msg):
pi.to_timestamp()
with pytest.raises(OutOfBoundsDatetime, match=msg):
pi._data.to_timestamp()
@pytest.mark.parametrize("propname", PeriodArray._bool_ops)
def test_bool_properties(self, period_index, propname):
# in this case _bool_ops is just `is_leap_year`
pi = period_index
arr = PeriodArray(pi)
result = getattr(arr, propname)
expected = np.array(getattr(pi, propname))
tm.assert_numpy_array_equal(result, expected)
@pytest.mark.parametrize("propname", PeriodArray._field_ops)
def test_int_properties(self, period_index, propname):
pi = period_index
arr = PeriodArray(pi)
result = getattr(arr, propname)
expected = np.array(getattr(pi, propname))
tm.assert_numpy_array_equal(result, expected)
def test_array_interface(self, period_index):
arr = PeriodArray(period_index)
# default asarray gives objects
result = np.asarray(arr)
expected = np.array(list(arr), dtype=object)
tm.assert_numpy_array_equal(result, expected)
# to object dtype (same as default)
result = np.asarray(arr, dtype=object)
tm.assert_numpy_array_equal(result, expected)
result = np.asarray(arr, dtype="int64")
tm.assert_numpy_array_equal(result, arr.asi8)
# to other dtypes
msg = r"float\(\) argument must be a string or a number, not 'Period'"
with pytest.raises(TypeError, match=msg):
np.asarray(arr, dtype="float64")
result = np.asarray(arr, dtype="S20")
expected = np.asarray(arr).astype("S20")
tm.assert_numpy_array_equal(result, expected)
def test_strftime(self, period_index):
arr = PeriodArray(period_index)
result = arr.strftime("%Y")
expected = np.array([per.strftime("%Y") for per in arr], dtype=object)
tm.assert_numpy_array_equal(result, expected)
def test_strftime_nat(self):
# GH 29578
arr = PeriodArray(PeriodIndex(["2019-01-01", pd.NaT], dtype="period[D]"))
result = arr.strftime("%Y-%m-%d")
expected = np.array(["2019-01-01", np.nan], dtype=object)
tm.assert_numpy_array_equal(result, expected)
@pytest.mark.parametrize(
"array,casting_nats",
[
(
pd.TimedeltaIndex(["1 Day", "3 Hours", "NaT"])._data,
(pd.NaT, np.timedelta64("NaT", "ns")),
),
(
pd.date_range("2000-01-01", periods=3, freq="D")._data,
(pd.NaT, np.datetime64("NaT", "ns")),
),
(pd.period_range("2000-01-01", periods=3, freq="D")._data, (pd.NaT,)),
],
ids=lambda x: type(x).__name__,
)
def test_casting_nat_setitem_array(array, casting_nats):
expected = type(array)._from_sequence([pd.NaT, array[1], array[2]])
for nat in casting_nats:
arr = array.copy()
arr[0] = nat
tm.assert_equal(arr, expected)
@pytest.mark.parametrize(
"array,non_casting_nats",
[
(
pd.TimedeltaIndex(["1 Day", "3 Hours", "NaT"])._data,
(np.datetime64("NaT", "ns"), pd.NaT.value),
),
(
pd.date_range("2000-01-01", periods=3, freq="D")._data,
(np.timedelta64("NaT", "ns"), pd.NaT.value),
),
(
pd.period_range("2000-01-01", periods=3, freq="D")._data,
(np.datetime64("NaT", "ns"), np.timedelta64("NaT", "ns"), pd.NaT.value),
),
],
ids=lambda x: type(x).__name__,
)
def test_invalid_nat_setitem_array(array, non_casting_nats):
msg = (
"'value' should be a '(Timestamp|Timedelta|Period)', 'NaT', or array of those. "
"Got '(timedelta64|datetime64|int)' instead."
)
for nat in non_casting_nats:
with pytest.raises(TypeError, match=msg):
array[0] = nat
@pytest.mark.parametrize(
"array",
[
pd.date_range("2000", periods=4).array,
pd.timedelta_range("2000", periods=4).array,
],
)
def test_to_numpy_extra(array):
if _np_version_under1p18:
# np.isnan(NaT) raises, so use pandas'
isnan = pd.isna
else:
isnan = np.isnan
array[0] = pd.NaT
original = array.copy()
result = array.to_numpy()
assert isnan(result[0])
result = array.to_numpy(dtype="int64")
assert result[0] == -9223372036854775808
result = array.to_numpy(dtype="int64", na_value=0)
assert result[0] == 0
result = array.to_numpy(na_value=array[1].to_numpy())
assert result[0] == result[1]
result = array.to_numpy(na_value=array[1].to_numpy(copy=False))
assert result[0] == result[1]
tm.assert_equal(array, original)
@pytest.mark.parametrize("as_index", [True, False])
@pytest.mark.parametrize(
"values",
[
pd.to_datetime(["2020-01-01", "2020-02-01"]),
pd.TimedeltaIndex([1, 2], unit="D"),
pd.PeriodIndex(["2020-01-01", "2020-02-01"], freq="D"),
],
)
@pytest.mark.parametrize(
"klass",
[
list,
np.array,
pd.array,
pd.Series,
pd.Index,
pd.Categorical,
pd.CategoricalIndex,
],
)
def test_searchsorted_datetimelike_with_listlike(values, klass, as_index):
# https://github.com/pandas-dev/pandas/issues/32762
if not as_index:
values = values._data
result = values.searchsorted(klass(values))
expected = np.array([0, 1], dtype=result.dtype)
tm.assert_numpy_array_equal(result, expected)
@pytest.mark.parametrize(
"values",
[
pd.to_datetime(["2020-01-01", "2020-02-01"]),
pd.TimedeltaIndex([1, 2], unit="D"),
pd.PeriodIndex(["2020-01-01", "2020-02-01"], freq="D"),
],
)
@pytest.mark.parametrize(
"arg", [[1, 2], ["a", "b"], [pd.Timestamp("2020-01-01", tz="Europe/London")] * 2]
)
def test_searchsorted_datetimelike_with_listlike_invalid_dtype(values, arg):
# https://github.com/pandas-dev/pandas/issues/32762
msg = "[Unexpected type|Cannot compare]"
with pytest.raises(TypeError, match=msg):
values.searchsorted(arg)
@pytest.mark.parametrize("klass", [list, tuple, np.array, pd.Series])
def test_period_index_construction_from_strings(klass):
# https://github.com/pandas-dev/pandas/issues/26109
strings = ["2020Q1", "2020Q2"] * 2
data = klass(strings)
result = PeriodIndex(data, freq="Q")
expected = PeriodIndex([Period(s) for s in strings])
tm.assert_index_equal(result, expected)