1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/venv/lib/python3.9/site-packages/pandas/io/sas/sasreader.py

134 lines
3.9 KiB

"""
Read SAS sas7bdat or xport files.
"""
from abc import ABCMeta, abstractmethod
from typing import TYPE_CHECKING, Optional, Union, overload
from pandas._typing import FilePathOrBuffer, Label
from pandas.io.common import stringify_path
if TYPE_CHECKING:
from pandas import DataFrame # noqa: F401
# TODO(PY38): replace with Protocol in Python 3.8
class ReaderBase(metaclass=ABCMeta):
"""
Protocol for XportReader and SAS7BDATReader classes.
"""
@abstractmethod
def read(self, nrows=None):
pass
@abstractmethod
def close(self):
pass
@overload
def read_sas(
filepath_or_buffer: FilePathOrBuffer,
format: Optional[str] = ...,
index: Optional[Label] = ...,
encoding: Optional[str] = ...,
chunksize: int = ...,
iterator: bool = ...,
) -> ReaderBase:
...
@overload
def read_sas(
filepath_or_buffer: FilePathOrBuffer,
format: Optional[str] = ...,
index: Optional[Label] = ...,
encoding: Optional[str] = ...,
chunksize: None = ...,
iterator: bool = ...,
) -> Union["DataFrame", ReaderBase]:
...
def read_sas(
filepath_or_buffer: FilePathOrBuffer,
format: Optional[str] = None,
index: Optional[Label] = None,
encoding: Optional[str] = None,
chunksize: Optional[int] = None,
iterator: bool = False,
) -> Union["DataFrame", ReaderBase]:
"""
Read SAS files stored as either XPORT or SAS7BDAT format files.
Parameters
----------
filepath_or_buffer : str, path object or file-like object
Any valid string path is acceptable. The string could be a URL. Valid
URL schemes include http, ftp, s3, and file. For file URLs, a host is
expected. A local file could be:
``file://localhost/path/to/table.sas``.
If you want to pass in a path object, pandas accepts any
``os.PathLike``.
By file-like object, we refer to objects with a ``read()`` method,
such as a file handler (e.g. via builtin ``open`` function)
or ``StringIO``.
format : str {'xport', 'sas7bdat'} or None
If None, file format is inferred from file extension. If 'xport' or
'sas7bdat', uses the corresponding format.
index : identifier of index column, defaults to None
Identifier of column that should be used as index of the DataFrame.
encoding : str, default is None
Encoding for text data. If None, text data are stored as raw bytes.
chunksize : int
Read file `chunksize` lines at a time, returns iterator.
iterator : bool, defaults to False
If True, returns an iterator for reading the file incrementally.
Returns
-------
DataFrame if iterator=False and chunksize=None, else SAS7BDATReader
or XportReader
"""
if format is None:
buffer_error_msg = (
"If this is a buffer object rather "
"than a string name, you must specify a format string"
)
filepath_or_buffer = stringify_path(filepath_or_buffer)
if not isinstance(filepath_or_buffer, str):
raise ValueError(buffer_error_msg)
fname = filepath_or_buffer.lower()
if fname.endswith(".xpt"):
format = "xport"
elif fname.endswith(".sas7bdat"):
format = "sas7bdat"
else:
raise ValueError("unable to infer format of SAS file")
reader: ReaderBase
if format.lower() == "xport":
from pandas.io.sas.sas_xport import XportReader
reader = XportReader(
filepath_or_buffer, index=index, encoding=encoding, chunksize=chunksize
)
elif format.lower() == "sas7bdat":
from pandas.io.sas.sas7bdat import SAS7BDATReader
reader = SAS7BDATReader(
filepath_or_buffer, index=index, encoding=encoding, chunksize=chunksize
)
else:
raise ValueError("unknown SAS format")
if iterator or chunksize:
return reader
data = reader.read()
reader.close()
return data