Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
954 lines
31 KiB
954 lines
31 KiB
4 years ago
|
import abc
|
||
|
import datetime
|
||
|
from io import BufferedIOBase, BytesIO, RawIOBase
|
||
|
import os
|
||
|
from textwrap import fill
|
||
|
from typing import Union
|
||
|
|
||
|
from pandas._config import config
|
||
|
|
||
|
from pandas._libs.parsers import STR_NA_VALUES
|
||
|
from pandas.errors import EmptyDataError
|
||
|
from pandas.util._decorators import Appender, deprecate_nonkeyword_arguments
|
||
|
|
||
|
from pandas.core.dtypes.common import is_bool, is_float, is_integer, is_list_like
|
||
|
|
||
|
from pandas.core.frame import DataFrame
|
||
|
|
||
|
from pandas.io.common import (
|
||
|
get_filepath_or_buffer,
|
||
|
is_url,
|
||
|
stringify_path,
|
||
|
urlopen,
|
||
|
validate_header_arg,
|
||
|
)
|
||
|
from pandas.io.excel._util import (
|
||
|
_fill_mi_header,
|
||
|
_get_default_writer,
|
||
|
_maybe_convert_usecols,
|
||
|
_pop_header_name,
|
||
|
get_writer,
|
||
|
)
|
||
|
from pandas.io.parsers import TextParser
|
||
|
|
||
|
_read_excel_doc = (
|
||
|
"""
|
||
|
Read an Excel file into a pandas DataFrame.
|
||
|
|
||
|
Supports `xls`, `xlsx`, `xlsm`, `xlsb`, `odf`, `ods` and `odt` file extensions
|
||
|
read from a local filesystem or URL. Supports an option to read
|
||
|
a single sheet or a list of sheets.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
io : str, bytes, ExcelFile, xlrd.Book, path object, or file-like object
|
||
|
Any valid string path is acceptable. The string could be a URL. Valid
|
||
|
URL schemes include http, ftp, s3, and file. For file URLs, a host is
|
||
|
expected. A local file could be: ``file://localhost/path/to/table.xlsx``.
|
||
|
|
||
|
If you want to pass in a path object, pandas accepts any ``os.PathLike``.
|
||
|
|
||
|
By file-like object, we refer to objects with a ``read()`` method,
|
||
|
such as a file handler (e.g. via builtin ``open`` function)
|
||
|
or ``StringIO``.
|
||
|
sheet_name : str, int, list, or None, default 0
|
||
|
Strings are used for sheet names. Integers are used in zero-indexed
|
||
|
sheet positions. Lists of strings/integers are used to request
|
||
|
multiple sheets. Specify None to get all sheets.
|
||
|
|
||
|
Available cases:
|
||
|
|
||
|
* Defaults to ``0``: 1st sheet as a `DataFrame`
|
||
|
* ``1``: 2nd sheet as a `DataFrame`
|
||
|
* ``"Sheet1"``: Load sheet with name "Sheet1"
|
||
|
* ``[0, 1, "Sheet5"]``: Load first, second and sheet named "Sheet5"
|
||
|
as a dict of `DataFrame`
|
||
|
* None: All sheets.
|
||
|
|
||
|
header : int, list of int, default 0
|
||
|
Row (0-indexed) to use for the column labels of the parsed
|
||
|
DataFrame. If a list of integers is passed those row positions will
|
||
|
be combined into a ``MultiIndex``. Use None if there is no header.
|
||
|
names : array-like, default None
|
||
|
List of column names to use. If file contains no header row,
|
||
|
then you should explicitly pass header=None.
|
||
|
index_col : int, list of int, default None
|
||
|
Column (0-indexed) to use as the row labels of the DataFrame.
|
||
|
Pass None if there is no such column. If a list is passed,
|
||
|
those columns will be combined into a ``MultiIndex``. If a
|
||
|
subset of data is selected with ``usecols``, index_col
|
||
|
is based on the subset.
|
||
|
usecols : int, str, list-like, or callable default None
|
||
|
* If None, then parse all columns.
|
||
|
* If str, then indicates comma separated list of Excel column letters
|
||
|
and column ranges (e.g. "A:E" or "A,C,E:F"). Ranges are inclusive of
|
||
|
both sides.
|
||
|
* If list of int, then indicates list of column numbers to be parsed.
|
||
|
* If list of string, then indicates list of column names to be parsed.
|
||
|
|
||
|
.. versionadded:: 0.24.0
|
||
|
|
||
|
* If callable, then evaluate each column name against it and parse the
|
||
|
column if the callable returns ``True``.
|
||
|
|
||
|
Returns a subset of the columns according to behavior above.
|
||
|
|
||
|
.. versionadded:: 0.24.0
|
||
|
|
||
|
squeeze : bool, default False
|
||
|
If the parsed data only contains one column then return a Series.
|
||
|
dtype : Type name or dict of column -> type, default None
|
||
|
Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32}
|
||
|
Use `object` to preserve data as stored in Excel and not interpret dtype.
|
||
|
If converters are specified, they will be applied INSTEAD
|
||
|
of dtype conversion.
|
||
|
engine : str, default None
|
||
|
If io is not a buffer or path, this must be set to identify io.
|
||
|
Supported engines: "xlrd", "openpyxl", "odf", "pyxlsb", default "xlrd".
|
||
|
Engine compatibility :
|
||
|
- "xlrd" supports most old/new Excel file formats.
|
||
|
- "openpyxl" supports newer Excel file formats.
|
||
|
- "odf" supports OpenDocument file formats (.odf, .ods, .odt).
|
||
|
- "pyxlsb" supports Binary Excel files.
|
||
|
converters : dict, default None
|
||
|
Dict of functions for converting values in certain columns. Keys can
|
||
|
either be integers or column labels, values are functions that take one
|
||
|
input argument, the Excel cell content, and return the transformed
|
||
|
content.
|
||
|
true_values : list, default None
|
||
|
Values to consider as True.
|
||
|
false_values : list, default None
|
||
|
Values to consider as False.
|
||
|
skiprows : list-like
|
||
|
Rows to skip at the beginning (0-indexed).
|
||
|
nrows : int, default None
|
||
|
Number of rows to parse.
|
||
|
|
||
|
.. versionadded:: 0.23.0
|
||
|
|
||
|
na_values : scalar, str, list-like, or dict, default None
|
||
|
Additional strings to recognize as NA/NaN. If dict passed, specific
|
||
|
per-column NA values. By default the following values are interpreted
|
||
|
as NaN: '"""
|
||
|
+ fill("', '".join(sorted(STR_NA_VALUES)), 70, subsequent_indent=" ")
|
||
|
+ """'.
|
||
|
keep_default_na : bool, default True
|
||
|
Whether or not to include the default NaN values when parsing the data.
|
||
|
Depending on whether `na_values` is passed in, the behavior is as follows:
|
||
|
|
||
|
* If `keep_default_na` is True, and `na_values` are specified, `na_values`
|
||
|
is appended to the default NaN values used for parsing.
|
||
|
* If `keep_default_na` is True, and `na_values` are not specified, only
|
||
|
the default NaN values are used for parsing.
|
||
|
* If `keep_default_na` is False, and `na_values` are specified, only
|
||
|
the NaN values specified `na_values` are used for parsing.
|
||
|
* If `keep_default_na` is False, and `na_values` are not specified, no
|
||
|
strings will be parsed as NaN.
|
||
|
|
||
|
Note that if `na_filter` is passed in as False, the `keep_default_na` and
|
||
|
`na_values` parameters will be ignored.
|
||
|
na_filter : bool, default True
|
||
|
Detect missing value markers (empty strings and the value of na_values). In
|
||
|
data without any NAs, passing na_filter=False can improve the performance
|
||
|
of reading a large file.
|
||
|
verbose : bool, default False
|
||
|
Indicate number of NA values placed in non-numeric columns.
|
||
|
parse_dates : bool, list-like, or dict, default False
|
||
|
The behavior is as follows:
|
||
|
|
||
|
* bool. If True -> try parsing the index.
|
||
|
* list of int or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3
|
||
|
each as a separate date column.
|
||
|
* list of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as
|
||
|
a single date column.
|
||
|
* dict, e.g. {'foo' : [1, 3]} -> parse columns 1, 3 as date and call
|
||
|
result 'foo'
|
||
|
|
||
|
If a column or index contains an unparseable date, the entire column or
|
||
|
index will be returned unaltered as an object data type. If you don`t want to
|
||
|
parse some cells as date just change their type in Excel to "Text".
|
||
|
For non-standard datetime parsing, use ``pd.to_datetime`` after ``pd.read_excel``.
|
||
|
|
||
|
Note: A fast-path exists for iso8601-formatted dates.
|
||
|
date_parser : function, optional
|
||
|
Function to use for converting a sequence of string columns to an array of
|
||
|
datetime instances. The default uses ``dateutil.parser.parser`` to do the
|
||
|
conversion. Pandas will try to call `date_parser` in three different ways,
|
||
|
advancing to the next if an exception occurs: 1) Pass one or more arrays
|
||
|
(as defined by `parse_dates`) as arguments; 2) concatenate (row-wise) the
|
||
|
string values from the columns defined by `parse_dates` into a single array
|
||
|
and pass that; and 3) call `date_parser` once for each row using one or
|
||
|
more strings (corresponding to the columns defined by `parse_dates`) as
|
||
|
arguments.
|
||
|
thousands : str, default None
|
||
|
Thousands separator for parsing string columns to numeric. Note that
|
||
|
this parameter is only necessary for columns stored as TEXT in Excel,
|
||
|
any numeric columns will automatically be parsed, regardless of display
|
||
|
format.
|
||
|
comment : str, default None
|
||
|
Comments out remainder of line. Pass a character or characters to this
|
||
|
argument to indicate comments in the input file. Any data between the
|
||
|
comment string and the end of the current line is ignored.
|
||
|
skipfooter : int, default 0
|
||
|
Rows at the end to skip (0-indexed).
|
||
|
convert_float : bool, default True
|
||
|
Convert integral floats to int (i.e., 1.0 --> 1). If False, all numeric
|
||
|
data will be read in as floats: Excel stores all numbers as floats
|
||
|
internally.
|
||
|
mangle_dupe_cols : bool, default True
|
||
|
Duplicate columns will be specified as 'X', 'X.1', ...'X.N', rather than
|
||
|
'X'...'X'. Passing in False will cause data to be overwritten if there
|
||
|
are duplicate names in the columns.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
DataFrame or dict of DataFrames
|
||
|
DataFrame from the passed in Excel file. See notes in sheet_name
|
||
|
argument for more information on when a dict of DataFrames is returned.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
DataFrame.to_excel : Write DataFrame to an Excel file.
|
||
|
DataFrame.to_csv : Write DataFrame to a comma-separated values (csv) file.
|
||
|
read_csv : Read a comma-separated values (csv) file into DataFrame.
|
||
|
read_fwf : Read a table of fixed-width formatted lines into DataFrame.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
The file can be read using the file name as string or an open file object:
|
||
|
|
||
|
>>> pd.read_excel('tmp.xlsx', index_col=0) # doctest: +SKIP
|
||
|
Name Value
|
||
|
0 string1 1
|
||
|
1 string2 2
|
||
|
2 #Comment 3
|
||
|
|
||
|
>>> pd.read_excel(open('tmp.xlsx', 'rb'),
|
||
|
... sheet_name='Sheet3') # doctest: +SKIP
|
||
|
Unnamed: 0 Name Value
|
||
|
0 0 string1 1
|
||
|
1 1 string2 2
|
||
|
2 2 #Comment 3
|
||
|
|
||
|
Index and header can be specified via the `index_col` and `header` arguments
|
||
|
|
||
|
>>> pd.read_excel('tmp.xlsx', index_col=None, header=None) # doctest: +SKIP
|
||
|
0 1 2
|
||
|
0 NaN Name Value
|
||
|
1 0.0 string1 1
|
||
|
2 1.0 string2 2
|
||
|
3 2.0 #Comment 3
|
||
|
|
||
|
Column types are inferred but can be explicitly specified
|
||
|
|
||
|
>>> pd.read_excel('tmp.xlsx', index_col=0,
|
||
|
... dtype={'Name': str, 'Value': float}) # doctest: +SKIP
|
||
|
Name Value
|
||
|
0 string1 1.0
|
||
|
1 string2 2.0
|
||
|
2 #Comment 3.0
|
||
|
|
||
|
True, False, and NA values, and thousands separators have defaults,
|
||
|
but can be explicitly specified, too. Supply the values you would like
|
||
|
as strings or lists of strings!
|
||
|
|
||
|
>>> pd.read_excel('tmp.xlsx', index_col=0,
|
||
|
... na_values=['string1', 'string2']) # doctest: +SKIP
|
||
|
Name Value
|
||
|
0 NaN 1
|
||
|
1 NaN 2
|
||
|
2 #Comment 3
|
||
|
|
||
|
Comment lines in the excel input file can be skipped using the `comment` kwarg
|
||
|
|
||
|
>>> pd.read_excel('tmp.xlsx', index_col=0, comment='#') # doctest: +SKIP
|
||
|
Name Value
|
||
|
0 string1 1.0
|
||
|
1 string2 2.0
|
||
|
2 None NaN
|
||
|
"""
|
||
|
)
|
||
|
|
||
|
|
||
|
@deprecate_nonkeyword_arguments(allowed_args=2, version="2.0")
|
||
|
@Appender(_read_excel_doc)
|
||
|
def read_excel(
|
||
|
io,
|
||
|
sheet_name=0,
|
||
|
header=0,
|
||
|
names=None,
|
||
|
index_col=None,
|
||
|
usecols=None,
|
||
|
squeeze=False,
|
||
|
dtype=None,
|
||
|
engine=None,
|
||
|
converters=None,
|
||
|
true_values=None,
|
||
|
false_values=None,
|
||
|
skiprows=None,
|
||
|
nrows=None,
|
||
|
na_values=None,
|
||
|
keep_default_na=True,
|
||
|
na_filter=True,
|
||
|
verbose=False,
|
||
|
parse_dates=False,
|
||
|
date_parser=None,
|
||
|
thousands=None,
|
||
|
comment=None,
|
||
|
skipfooter=0,
|
||
|
convert_float=True,
|
||
|
mangle_dupe_cols=True,
|
||
|
):
|
||
|
|
||
|
if not isinstance(io, ExcelFile):
|
||
|
io = ExcelFile(io, engine=engine)
|
||
|
elif engine and engine != io.engine:
|
||
|
raise ValueError(
|
||
|
"Engine should not be specified when passing "
|
||
|
"an ExcelFile - ExcelFile already has the engine set"
|
||
|
)
|
||
|
|
||
|
return io.parse(
|
||
|
sheet_name=sheet_name,
|
||
|
header=header,
|
||
|
names=names,
|
||
|
index_col=index_col,
|
||
|
usecols=usecols,
|
||
|
squeeze=squeeze,
|
||
|
dtype=dtype,
|
||
|
converters=converters,
|
||
|
true_values=true_values,
|
||
|
false_values=false_values,
|
||
|
skiprows=skiprows,
|
||
|
nrows=nrows,
|
||
|
na_values=na_values,
|
||
|
keep_default_na=keep_default_na,
|
||
|
na_filter=na_filter,
|
||
|
verbose=verbose,
|
||
|
parse_dates=parse_dates,
|
||
|
date_parser=date_parser,
|
||
|
thousands=thousands,
|
||
|
comment=comment,
|
||
|
skipfooter=skipfooter,
|
||
|
convert_float=convert_float,
|
||
|
mangle_dupe_cols=mangle_dupe_cols,
|
||
|
)
|
||
|
|
||
|
|
||
|
class _BaseExcelReader(metaclass=abc.ABCMeta):
|
||
|
def __init__(self, filepath_or_buffer):
|
||
|
# If filepath_or_buffer is a url, load the data into a BytesIO
|
||
|
if is_url(filepath_or_buffer):
|
||
|
filepath_or_buffer = BytesIO(urlopen(filepath_or_buffer).read())
|
||
|
elif not isinstance(filepath_or_buffer, (ExcelFile, self._workbook_class)):
|
||
|
filepath_or_buffer, _, _, _ = get_filepath_or_buffer(filepath_or_buffer)
|
||
|
|
||
|
if isinstance(filepath_or_buffer, self._workbook_class):
|
||
|
self.book = filepath_or_buffer
|
||
|
elif hasattr(filepath_or_buffer, "read"):
|
||
|
# N.B. xlrd.Book has a read attribute too
|
||
|
filepath_or_buffer.seek(0)
|
||
|
self.book = self.load_workbook(filepath_or_buffer)
|
||
|
elif isinstance(filepath_or_buffer, str):
|
||
|
self.book = self.load_workbook(filepath_or_buffer)
|
||
|
elif isinstance(filepath_or_buffer, bytes):
|
||
|
self.book = self.load_workbook(BytesIO(filepath_or_buffer))
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
"Must explicitly set engine if not passing in buffer or path for io."
|
||
|
)
|
||
|
|
||
|
@property
|
||
|
@abc.abstractmethod
|
||
|
def _workbook_class(self):
|
||
|
pass
|
||
|
|
||
|
@abc.abstractmethod
|
||
|
def load_workbook(self, filepath_or_buffer):
|
||
|
pass
|
||
|
|
||
|
def close(self):
|
||
|
pass
|
||
|
|
||
|
@property
|
||
|
@abc.abstractmethod
|
||
|
def sheet_names(self):
|
||
|
pass
|
||
|
|
||
|
@abc.abstractmethod
|
||
|
def get_sheet_by_name(self, name):
|
||
|
pass
|
||
|
|
||
|
@abc.abstractmethod
|
||
|
def get_sheet_by_index(self, index):
|
||
|
pass
|
||
|
|
||
|
@abc.abstractmethod
|
||
|
def get_sheet_data(self, sheet, convert_float):
|
||
|
pass
|
||
|
|
||
|
def parse(
|
||
|
self,
|
||
|
sheet_name=0,
|
||
|
header=0,
|
||
|
names=None,
|
||
|
index_col=None,
|
||
|
usecols=None,
|
||
|
squeeze=False,
|
||
|
dtype=None,
|
||
|
true_values=None,
|
||
|
false_values=None,
|
||
|
skiprows=None,
|
||
|
nrows=None,
|
||
|
na_values=None,
|
||
|
verbose=False,
|
||
|
parse_dates=False,
|
||
|
date_parser=None,
|
||
|
thousands=None,
|
||
|
comment=None,
|
||
|
skipfooter=0,
|
||
|
convert_float=True,
|
||
|
mangle_dupe_cols=True,
|
||
|
**kwds,
|
||
|
):
|
||
|
|
||
|
validate_header_arg(header)
|
||
|
|
||
|
ret_dict = False
|
||
|
|
||
|
# Keep sheetname to maintain backwards compatibility.
|
||
|
if isinstance(sheet_name, list):
|
||
|
sheets = sheet_name
|
||
|
ret_dict = True
|
||
|
elif sheet_name is None:
|
||
|
sheets = self.sheet_names
|
||
|
ret_dict = True
|
||
|
else:
|
||
|
sheets = [sheet_name]
|
||
|
|
||
|
# handle same-type duplicates.
|
||
|
sheets = list(dict.fromkeys(sheets).keys())
|
||
|
|
||
|
output = {}
|
||
|
|
||
|
for asheetname in sheets:
|
||
|
if verbose:
|
||
|
print(f"Reading sheet {asheetname}")
|
||
|
|
||
|
if isinstance(asheetname, str):
|
||
|
sheet = self.get_sheet_by_name(asheetname)
|
||
|
else: # assume an integer if not a string
|
||
|
sheet = self.get_sheet_by_index(asheetname)
|
||
|
|
||
|
data = self.get_sheet_data(sheet, convert_float)
|
||
|
usecols = _maybe_convert_usecols(usecols)
|
||
|
|
||
|
if not data:
|
||
|
output[asheetname] = DataFrame()
|
||
|
continue
|
||
|
|
||
|
if is_list_like(header) and len(header) == 1:
|
||
|
header = header[0]
|
||
|
|
||
|
# forward fill and pull out names for MultiIndex column
|
||
|
header_names = None
|
||
|
if header is not None and is_list_like(header):
|
||
|
header_names = []
|
||
|
control_row = [True] * len(data[0])
|
||
|
|
||
|
for row in header:
|
||
|
if is_integer(skiprows):
|
||
|
row += skiprows
|
||
|
|
||
|
data[row], control_row = _fill_mi_header(data[row], control_row)
|
||
|
|
||
|
if index_col is not None:
|
||
|
header_name, _ = _pop_header_name(data[row], index_col)
|
||
|
header_names.append(header_name)
|
||
|
|
||
|
if is_list_like(index_col):
|
||
|
# Forward fill values for MultiIndex index.
|
||
|
if header is None:
|
||
|
offset = 0
|
||
|
elif not is_list_like(header):
|
||
|
offset = 1 + header
|
||
|
else:
|
||
|
offset = 1 + max(header)
|
||
|
|
||
|
# Check if we have an empty dataset
|
||
|
# before trying to collect data.
|
||
|
if offset < len(data):
|
||
|
for col in index_col:
|
||
|
last = data[offset][col]
|
||
|
|
||
|
for row in range(offset + 1, len(data)):
|
||
|
if data[row][col] == "" or data[row][col] is None:
|
||
|
data[row][col] = last
|
||
|
else:
|
||
|
last = data[row][col]
|
||
|
|
||
|
has_index_names = is_list_like(header) and len(header) > 1
|
||
|
|
||
|
# GH 12292 : error when read one empty column from excel file
|
||
|
try:
|
||
|
parser = TextParser(
|
||
|
data,
|
||
|
names=names,
|
||
|
header=header,
|
||
|
index_col=index_col,
|
||
|
has_index_names=has_index_names,
|
||
|
squeeze=squeeze,
|
||
|
dtype=dtype,
|
||
|
true_values=true_values,
|
||
|
false_values=false_values,
|
||
|
skiprows=skiprows,
|
||
|
nrows=nrows,
|
||
|
na_values=na_values,
|
||
|
parse_dates=parse_dates,
|
||
|
date_parser=date_parser,
|
||
|
thousands=thousands,
|
||
|
comment=comment,
|
||
|
skipfooter=skipfooter,
|
||
|
usecols=usecols,
|
||
|
mangle_dupe_cols=mangle_dupe_cols,
|
||
|
**kwds,
|
||
|
)
|
||
|
|
||
|
output[asheetname] = parser.read(nrows=nrows)
|
||
|
|
||
|
if not squeeze or isinstance(output[asheetname], DataFrame):
|
||
|
if header_names:
|
||
|
output[asheetname].columns = output[
|
||
|
asheetname
|
||
|
].columns.set_names(header_names)
|
||
|
|
||
|
except EmptyDataError:
|
||
|
# No Data, return an empty DataFrame
|
||
|
output[asheetname] = DataFrame()
|
||
|
|
||
|
if ret_dict:
|
||
|
return output
|
||
|
else:
|
||
|
return output[asheetname]
|
||
|
|
||
|
|
||
|
class ExcelWriter(metaclass=abc.ABCMeta):
|
||
|
"""
|
||
|
Class for writing DataFrame objects into excel sheets.
|
||
|
|
||
|
Default is to use xlwt for xls, openpyxl for xlsx, odf for ods.
|
||
|
See DataFrame.to_excel for typical usage.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
path : str
|
||
|
Path to xls or xlsx or ods file.
|
||
|
engine : str (optional)
|
||
|
Engine to use for writing. If None, defaults to
|
||
|
``io.excel.<extension>.writer``. NOTE: can only be passed as a keyword
|
||
|
argument.
|
||
|
date_format : str, default None
|
||
|
Format string for dates written into Excel files (e.g. 'YYYY-MM-DD').
|
||
|
datetime_format : str, default None
|
||
|
Format string for datetime objects written into Excel files.
|
||
|
(e.g. 'YYYY-MM-DD HH:MM:SS').
|
||
|
mode : {'w', 'a'}, default 'w'
|
||
|
File mode to use (write or append).
|
||
|
|
||
|
.. versionadded:: 0.24.0
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
None
|
||
|
|
||
|
Methods
|
||
|
-------
|
||
|
None
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
None of the methods and properties are considered public.
|
||
|
|
||
|
For compatibility with CSV writers, ExcelWriter serializes lists
|
||
|
and dicts to strings before writing.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Default usage:
|
||
|
|
||
|
>>> with ExcelWriter('path_to_file.xlsx') as writer:
|
||
|
... df.to_excel(writer)
|
||
|
|
||
|
To write to separate sheets in a single file:
|
||
|
|
||
|
>>> with ExcelWriter('path_to_file.xlsx') as writer:
|
||
|
... df1.to_excel(writer, sheet_name='Sheet1')
|
||
|
... df2.to_excel(writer, sheet_name='Sheet2')
|
||
|
|
||
|
You can set the date format or datetime format:
|
||
|
|
||
|
>>> with ExcelWriter('path_to_file.xlsx',
|
||
|
date_format='YYYY-MM-DD',
|
||
|
datetime_format='YYYY-MM-DD HH:MM:SS') as writer:
|
||
|
... df.to_excel(writer)
|
||
|
|
||
|
You can also append to an existing Excel file:
|
||
|
|
||
|
>>> with ExcelWriter('path_to_file.xlsx', mode='a') as writer:
|
||
|
... df.to_excel(writer, sheet_name='Sheet3')
|
||
|
"""
|
||
|
|
||
|
# Defining an ExcelWriter implementation (see abstract methods for more...)
|
||
|
|
||
|
# - Mandatory
|
||
|
# - ``write_cells(self, cells, sheet_name=None, startrow=0, startcol=0)``
|
||
|
# --> called to write additional DataFrames to disk
|
||
|
# - ``supported_extensions`` (tuple of supported extensions), used to
|
||
|
# check that engine supports the given extension.
|
||
|
# - ``engine`` - string that gives the engine name. Necessary to
|
||
|
# instantiate class directly and bypass ``ExcelWriterMeta`` engine
|
||
|
# lookup.
|
||
|
# - ``save(self)`` --> called to save file to disk
|
||
|
# - Mostly mandatory (i.e. should at least exist)
|
||
|
# - book, cur_sheet, path
|
||
|
|
||
|
# - Optional:
|
||
|
# - ``__init__(self, path, engine=None, **kwargs)`` --> always called
|
||
|
# with path as first argument.
|
||
|
|
||
|
# You also need to register the class with ``register_writer()``.
|
||
|
# Technically, ExcelWriter implementations don't need to subclass
|
||
|
# ExcelWriter.
|
||
|
def __new__(cls, path, engine=None, **kwargs):
|
||
|
# only switch class if generic(ExcelWriter)
|
||
|
|
||
|
if cls is ExcelWriter:
|
||
|
if engine is None or (isinstance(engine, str) and engine == "auto"):
|
||
|
if isinstance(path, str):
|
||
|
ext = os.path.splitext(path)[-1][1:]
|
||
|
else:
|
||
|
ext = "xlsx"
|
||
|
|
||
|
try:
|
||
|
engine = config.get_option(f"io.excel.{ext}.writer")
|
||
|
if engine == "auto":
|
||
|
engine = _get_default_writer(ext)
|
||
|
except KeyError as err:
|
||
|
raise ValueError(f"No engine for filetype: '{ext}'") from err
|
||
|
cls = get_writer(engine)
|
||
|
|
||
|
return object.__new__(cls)
|
||
|
|
||
|
# declare external properties you can count on
|
||
|
book = None
|
||
|
curr_sheet = None
|
||
|
path = None
|
||
|
|
||
|
@property
|
||
|
@abc.abstractmethod
|
||
|
def supported_extensions(self):
|
||
|
"""Extensions that writer engine supports."""
|
||
|
pass
|
||
|
|
||
|
@property
|
||
|
@abc.abstractmethod
|
||
|
def engine(self):
|
||
|
"""Name of engine."""
|
||
|
pass
|
||
|
|
||
|
@abc.abstractmethod
|
||
|
def write_cells(
|
||
|
self, cells, sheet_name=None, startrow=0, startcol=0, freeze_panes=None
|
||
|
):
|
||
|
"""
|
||
|
Write given formatted cells into Excel an excel sheet
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
cells : generator
|
||
|
cell of formatted data to save to Excel sheet
|
||
|
sheet_name : str, default None
|
||
|
Name of Excel sheet, if None, then use self.cur_sheet
|
||
|
startrow : upper left cell row to dump data frame
|
||
|
startcol : upper left cell column to dump data frame
|
||
|
freeze_panes: int tuple of length 2
|
||
|
contains the bottom-most row and right-most column to freeze
|
||
|
"""
|
||
|
pass
|
||
|
|
||
|
@abc.abstractmethod
|
||
|
def save(self):
|
||
|
"""
|
||
|
Save workbook to disk.
|
||
|
"""
|
||
|
pass
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
path,
|
||
|
engine=None,
|
||
|
date_format=None,
|
||
|
datetime_format=None,
|
||
|
mode="w",
|
||
|
**engine_kwargs,
|
||
|
):
|
||
|
# validate that this engine can handle the extension
|
||
|
if isinstance(path, str):
|
||
|
ext = os.path.splitext(path)[-1]
|
||
|
self.check_extension(ext)
|
||
|
|
||
|
self.path = path
|
||
|
self.sheets = {}
|
||
|
self.cur_sheet = None
|
||
|
|
||
|
if date_format is None:
|
||
|
self.date_format = "YYYY-MM-DD"
|
||
|
else:
|
||
|
self.date_format = date_format
|
||
|
if datetime_format is None:
|
||
|
self.datetime_format = "YYYY-MM-DD HH:MM:SS"
|
||
|
else:
|
||
|
self.datetime_format = datetime_format
|
||
|
|
||
|
self.mode = mode
|
||
|
|
||
|
def __fspath__(self):
|
||
|
return stringify_path(self.path)
|
||
|
|
||
|
def _get_sheet_name(self, sheet_name):
|
||
|
if sheet_name is None:
|
||
|
sheet_name = self.cur_sheet
|
||
|
if sheet_name is None: # pragma: no cover
|
||
|
raise ValueError("Must pass explicit sheet_name or set cur_sheet property")
|
||
|
return sheet_name
|
||
|
|
||
|
def _value_with_fmt(self, val):
|
||
|
"""
|
||
|
Convert numpy types to Python types for the Excel writers.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
val : object
|
||
|
Value to be written into cells
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Tuple with the first element being the converted value and the second
|
||
|
being an optional format
|
||
|
"""
|
||
|
fmt = None
|
||
|
|
||
|
if is_integer(val):
|
||
|
val = int(val)
|
||
|
elif is_float(val):
|
||
|
val = float(val)
|
||
|
elif is_bool(val):
|
||
|
val = bool(val)
|
||
|
elif isinstance(val, datetime.datetime):
|
||
|
fmt = self.datetime_format
|
||
|
elif isinstance(val, datetime.date):
|
||
|
fmt = self.date_format
|
||
|
elif isinstance(val, datetime.timedelta):
|
||
|
val = val.total_seconds() / float(86400)
|
||
|
fmt = "0"
|
||
|
else:
|
||
|
val = str(val)
|
||
|
|
||
|
return val, fmt
|
||
|
|
||
|
@classmethod
|
||
|
def check_extension(cls, ext):
|
||
|
"""
|
||
|
checks that path's extension against the Writer's supported
|
||
|
extensions. If it isn't supported, raises UnsupportedFiletypeError.
|
||
|
"""
|
||
|
if ext.startswith("."):
|
||
|
ext = ext[1:]
|
||
|
if not any(ext in extension for extension in cls.supported_extensions):
|
||
|
raise ValueError(f"Invalid extension for engine '{cls.engine}': '{ext}'")
|
||
|
else:
|
||
|
return True
|
||
|
|
||
|
# Allow use as a contextmanager
|
||
|
def __enter__(self):
|
||
|
return self
|
||
|
|
||
|
def __exit__(self, exc_type, exc_value, traceback):
|
||
|
self.close()
|
||
|
|
||
|
def close(self):
|
||
|
"""synonym for save, to make it more file-like"""
|
||
|
return self.save()
|
||
|
|
||
|
|
||
|
def _is_ods_stream(stream: Union[BufferedIOBase, RawIOBase]) -> bool:
|
||
|
"""
|
||
|
Check if the stream is an OpenDocument Spreadsheet (.ods) file
|
||
|
|
||
|
It uses magic values inside the stream
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
stream : Union[BufferedIOBase, RawIOBase]
|
||
|
IO stream with data which might be an ODS file
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
is_ods : bool
|
||
|
Boolean indication that this is indeed an ODS file or not
|
||
|
"""
|
||
|
stream.seek(0)
|
||
|
is_ods = False
|
||
|
if stream.read(4) == b"PK\003\004":
|
||
|
stream.seek(30)
|
||
|
is_ods = (
|
||
|
stream.read(54) == b"mimetype"
|
||
|
b"application/vnd.oasis.opendocument.spreadsheet"
|
||
|
)
|
||
|
stream.seek(0)
|
||
|
return is_ods
|
||
|
|
||
|
|
||
|
class ExcelFile:
|
||
|
"""
|
||
|
Class for parsing tabular excel sheets into DataFrame objects.
|
||
|
|
||
|
Uses xlrd engine by default. See read_excel for more documentation
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
path_or_buffer : str, path object (pathlib.Path or py._path.local.LocalPath),
|
||
|
a file-like object, xlrd workbook or openpypl workbook.
|
||
|
If a string or path object, expected to be a path to a
|
||
|
.xls, .xlsx, .xlsb, .xlsm, .odf, .ods, or .odt file.
|
||
|
engine : str, default None
|
||
|
If io is not a buffer or path, this must be set to identify io.
|
||
|
Supported engines: ``xlrd``, ``openpyxl``, ``odf``, ``pyxlsb``,
|
||
|
default ``xlrd``.
|
||
|
Engine compatibility :
|
||
|
- ``xlrd`` supports most old/new Excel file formats.
|
||
|
- ``openpyxl`` supports newer Excel file formats.
|
||
|
- ``odf`` supports OpenDocument file formats (.odf, .ods, .odt).
|
||
|
- ``pyxlsb`` supports Binary Excel files.
|
||
|
"""
|
||
|
|
||
|
from pandas.io.excel._odfreader import _ODFReader
|
||
|
from pandas.io.excel._openpyxl import _OpenpyxlReader
|
||
|
from pandas.io.excel._pyxlsb import _PyxlsbReader
|
||
|
from pandas.io.excel._xlrd import _XlrdReader
|
||
|
|
||
|
_engines = {
|
||
|
"xlrd": _XlrdReader,
|
||
|
"openpyxl": _OpenpyxlReader,
|
||
|
"odf": _ODFReader,
|
||
|
"pyxlsb": _PyxlsbReader,
|
||
|
}
|
||
|
|
||
|
def __init__(self, path_or_buffer, engine=None):
|
||
|
if engine is None:
|
||
|
engine = "xlrd"
|
||
|
if isinstance(path_or_buffer, (BufferedIOBase, RawIOBase)):
|
||
|
if _is_ods_stream(path_or_buffer):
|
||
|
engine = "odf"
|
||
|
else:
|
||
|
ext = os.path.splitext(str(path_or_buffer))[-1]
|
||
|
if ext == ".ods":
|
||
|
engine = "odf"
|
||
|
if engine not in self._engines:
|
||
|
raise ValueError(f"Unknown engine: {engine}")
|
||
|
|
||
|
self.engine = engine
|
||
|
|
||
|
# Could be a str, ExcelFile, Book, etc.
|
||
|
self.io = path_or_buffer
|
||
|
# Always a string
|
||
|
self._io = stringify_path(path_or_buffer)
|
||
|
|
||
|
self._reader = self._engines[engine](self._io)
|
||
|
|
||
|
def __fspath__(self):
|
||
|
return self._io
|
||
|
|
||
|
def parse(
|
||
|
self,
|
||
|
sheet_name=0,
|
||
|
header=0,
|
||
|
names=None,
|
||
|
index_col=None,
|
||
|
usecols=None,
|
||
|
squeeze=False,
|
||
|
converters=None,
|
||
|
true_values=None,
|
||
|
false_values=None,
|
||
|
skiprows=None,
|
||
|
nrows=None,
|
||
|
na_values=None,
|
||
|
parse_dates=False,
|
||
|
date_parser=None,
|
||
|
thousands=None,
|
||
|
comment=None,
|
||
|
skipfooter=0,
|
||
|
convert_float=True,
|
||
|
mangle_dupe_cols=True,
|
||
|
**kwds,
|
||
|
):
|
||
|
"""
|
||
|
Parse specified sheet(s) into a DataFrame.
|
||
|
|
||
|
Equivalent to read_excel(ExcelFile, ...) See the read_excel
|
||
|
docstring for more info on accepted parameters.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
DataFrame or dict of DataFrames
|
||
|
DataFrame from the passed in Excel file.
|
||
|
"""
|
||
|
return self._reader.parse(
|
||
|
sheet_name=sheet_name,
|
||
|
header=header,
|
||
|
names=names,
|
||
|
index_col=index_col,
|
||
|
usecols=usecols,
|
||
|
squeeze=squeeze,
|
||
|
converters=converters,
|
||
|
true_values=true_values,
|
||
|
false_values=false_values,
|
||
|
skiprows=skiprows,
|
||
|
nrows=nrows,
|
||
|
na_values=na_values,
|
||
|
parse_dates=parse_dates,
|
||
|
date_parser=date_parser,
|
||
|
thousands=thousands,
|
||
|
comment=comment,
|
||
|
skipfooter=skipfooter,
|
||
|
convert_float=convert_float,
|
||
|
mangle_dupe_cols=mangle_dupe_cols,
|
||
|
**kwds,
|
||
|
)
|
||
|
|
||
|
@property
|
||
|
def book(self):
|
||
|
return self._reader.book
|
||
|
|
||
|
@property
|
||
|
def sheet_names(self):
|
||
|
return self._reader.sheet_names
|
||
|
|
||
|
def close(self):
|
||
|
"""close io if necessary"""
|
||
|
self._reader.close()
|
||
|
|
||
|
def __enter__(self):
|
||
|
return self
|
||
|
|
||
|
def __exit__(self, exc_type, exc_value, traceback):
|
||
|
self.close()
|
||
|
|
||
|
def __del__(self):
|
||
|
# Ensure we don't leak file descriptors, but put in try/except in case
|
||
|
# attributes are already deleted
|
||
|
try:
|
||
|
self.close()
|
||
|
except AttributeError:
|
||
|
pass
|