Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
132 lines
4.8 KiB
132 lines
4.8 KiB
4 years ago
|
#!/usr/bin/env python3
|
||
|
# -*- coding: utf-8 -*-
|
||
|
|
||
|
import timeit
|
||
|
import numpy
|
||
|
|
||
|
|
||
|
###############################################################################
|
||
|
# Global variables #
|
||
|
###############################################################################
|
||
|
|
||
|
|
||
|
# Small arrays
|
||
|
xs = numpy.random.uniform(-1, 1, 6).reshape(2, 3)
|
||
|
ys = numpy.random.uniform(-1, 1, 6).reshape(2, 3)
|
||
|
zs = xs + 1j * ys
|
||
|
m1 = [[True, False, False], [False, False, True]]
|
||
|
m2 = [[True, False, True], [False, False, True]]
|
||
|
nmxs = numpy.ma.array(xs, mask=m1)
|
||
|
nmys = numpy.ma.array(ys, mask=m2)
|
||
|
nmzs = numpy.ma.array(zs, mask=m1)
|
||
|
|
||
|
# Big arrays
|
||
|
xl = numpy.random.uniform(-1, 1, 100*100).reshape(100, 100)
|
||
|
yl = numpy.random.uniform(-1, 1, 100*100).reshape(100, 100)
|
||
|
zl = xl + 1j * yl
|
||
|
maskx = xl > 0.8
|
||
|
masky = yl < -0.8
|
||
|
nmxl = numpy.ma.array(xl, mask=maskx)
|
||
|
nmyl = numpy.ma.array(yl, mask=masky)
|
||
|
nmzl = numpy.ma.array(zl, mask=maskx)
|
||
|
|
||
|
|
||
|
###############################################################################
|
||
|
# Functions #
|
||
|
###############################################################################
|
||
|
|
||
|
|
||
|
def timer(s, v='', nloop=500, nrep=3):
|
||
|
units = ["s", "ms", "µs", "ns"]
|
||
|
scaling = [1, 1e3, 1e6, 1e9]
|
||
|
print("%s : %-50s : " % (v, s), end=' ')
|
||
|
varnames = ["%ss,nm%ss,%sl,nm%sl" % tuple(x*4) for x in 'xyz']
|
||
|
setup = 'from __main__ import numpy, ma, %s' % ','.join(varnames)
|
||
|
Timer = timeit.Timer(stmt=s, setup=setup)
|
||
|
best = min(Timer.repeat(nrep, nloop)) / nloop
|
||
|
if best > 0.0:
|
||
|
order = min(-int(numpy.floor(numpy.log10(best)) // 3), 3)
|
||
|
else:
|
||
|
order = 3
|
||
|
print("%d loops, best of %d: %.*g %s per loop" % (nloop, nrep,
|
||
|
3,
|
||
|
best * scaling[order],
|
||
|
units[order]))
|
||
|
|
||
|
|
||
|
def compare_functions_1v(func, nloop=500,
|
||
|
xs=xs, nmxs=nmxs, xl=xl, nmxl=nmxl):
|
||
|
funcname = func.__name__
|
||
|
print("-"*50)
|
||
|
print("%s on small arrays" % funcname)
|
||
|
module, data = "numpy.ma", "nmxs"
|
||
|
timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop)
|
||
|
|
||
|
print("%s on large arrays" % funcname)
|
||
|
module, data = "numpy.ma", "nmxl"
|
||
|
timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop)
|
||
|
return
|
||
|
|
||
|
def compare_methods(methodname, args, vars='x', nloop=500, test=True,
|
||
|
xs=xs, nmxs=nmxs, xl=xl, nmxl=nmxl):
|
||
|
print("-"*50)
|
||
|
print("%s on small arrays" % methodname)
|
||
|
data, ver = "nm%ss" % vars, 'numpy.ma'
|
||
|
timer("%(data)s.%(methodname)s(%(args)s)" % locals(), v=ver, nloop=nloop)
|
||
|
|
||
|
print("%s on large arrays" % methodname)
|
||
|
data, ver = "nm%sl" % vars, 'numpy.ma'
|
||
|
timer("%(data)s.%(methodname)s(%(args)s)" % locals(), v=ver, nloop=nloop)
|
||
|
return
|
||
|
|
||
|
def compare_functions_2v(func, nloop=500, test=True,
|
||
|
xs=xs, nmxs=nmxs,
|
||
|
ys=ys, nmys=nmys,
|
||
|
xl=xl, nmxl=nmxl,
|
||
|
yl=yl, nmyl=nmyl):
|
||
|
funcname = func.__name__
|
||
|
print("-"*50)
|
||
|
print("%s on small arrays" % funcname)
|
||
|
module, data = "numpy.ma", "nmxs,nmys"
|
||
|
timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop)
|
||
|
|
||
|
print("%s on large arrays" % funcname)
|
||
|
module, data = "numpy.ma", "nmxl,nmyl"
|
||
|
timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop)
|
||
|
return
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
compare_functions_1v(numpy.sin)
|
||
|
compare_functions_1v(numpy.log)
|
||
|
compare_functions_1v(numpy.sqrt)
|
||
|
|
||
|
compare_functions_2v(numpy.multiply)
|
||
|
compare_functions_2v(numpy.divide)
|
||
|
compare_functions_2v(numpy.power)
|
||
|
|
||
|
compare_methods('ravel', '', nloop=1000)
|
||
|
compare_methods('conjugate', '', 'z', nloop=1000)
|
||
|
compare_methods('transpose', '', nloop=1000)
|
||
|
compare_methods('compressed', '', nloop=1000)
|
||
|
compare_methods('__getitem__', '0', nloop=1000)
|
||
|
compare_methods('__getitem__', '(0,0)', nloop=1000)
|
||
|
compare_methods('__getitem__', '[0,-1]', nloop=1000)
|
||
|
compare_methods('__setitem__', '0, 17', nloop=1000, test=False)
|
||
|
compare_methods('__setitem__', '(0,0), 17', nloop=1000, test=False)
|
||
|
|
||
|
print("-"*50)
|
||
|
print("__setitem__ on small arrays")
|
||
|
timer('nmxs.__setitem__((-1,0),numpy.ma.masked)', 'numpy.ma ', nloop=10000)
|
||
|
|
||
|
print("-"*50)
|
||
|
print("__setitem__ on large arrays")
|
||
|
timer('nmxl.__setitem__((-1,0),numpy.ma.masked)', 'numpy.ma ', nloop=10000)
|
||
|
|
||
|
print("-"*50)
|
||
|
print("where on small arrays")
|
||
|
timer('numpy.ma.where(nmxs>2,nmxs,nmys)', 'numpy.ma ', nloop=1000)
|
||
|
print("-"*50)
|
||
|
print("where on large arrays")
|
||
|
timer('numpy.ma.where(nmxl>2,nmxl,nmyl)', 'numpy.ma ', nloop=100)
|