Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
474 lines
15 KiB
474 lines
15 KiB
4 years ago
|
"""
|
||
|
Functions for constructing matrix-like objects from graph attributes.
|
||
|
"""
|
||
|
|
||
|
__all__ = ["attr_matrix", "attr_sparse_matrix"]
|
||
|
|
||
|
|
||
|
def _node_value(G, node_attr):
|
||
|
"""Returns a function that returns a value from G.nodes[u].
|
||
|
|
||
|
We return a function expecting a node as its sole argument. Then, in the
|
||
|
simplest scenario, the returned function will return G.nodes[u][node_attr].
|
||
|
However, we also handle the case when `node_attr` is None or when it is a
|
||
|
function itself.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : graph
|
||
|
A NetworkX graph
|
||
|
|
||
|
node_attr : {None, str, callable}
|
||
|
Specification of how the value of the node attribute should be obtained
|
||
|
from the node attribute dictionary.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
value : function
|
||
|
A function expecting a node as its sole argument. The function will
|
||
|
returns a value from G.nodes[u] that depends on `edge_attr`.
|
||
|
|
||
|
"""
|
||
|
if node_attr is None:
|
||
|
|
||
|
def value(u):
|
||
|
return u
|
||
|
|
||
|
elif not hasattr(node_attr, "__call__"):
|
||
|
# assume it is a key for the node attribute dictionary
|
||
|
def value(u):
|
||
|
return G.nodes[u][node_attr]
|
||
|
|
||
|
else:
|
||
|
# Advanced: Allow users to specify something else.
|
||
|
#
|
||
|
# For example,
|
||
|
# node_attr = lambda u: G.nodes[u].get('size', .5) * 3
|
||
|
#
|
||
|
value = node_attr
|
||
|
|
||
|
return value
|
||
|
|
||
|
|
||
|
def _edge_value(G, edge_attr):
|
||
|
"""Returns a function that returns a value from G[u][v].
|
||
|
|
||
|
Suppose there exists an edge between u and v. Then we return a function
|
||
|
expecting u and v as arguments. For Graph and DiGraph, G[u][v] is
|
||
|
the edge attribute dictionary, and the function (essentially) returns
|
||
|
G[u][v][edge_attr]. However, we also handle cases when `edge_attr` is None
|
||
|
and when it is a function itself. For MultiGraph and MultiDiGraph, G[u][v]
|
||
|
is a dictionary of all edges between u and v. In this case, the returned
|
||
|
function sums the value of `edge_attr` for every edge between u and v.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : graph
|
||
|
A NetworkX graph
|
||
|
|
||
|
edge_attr : {None, str, callable}
|
||
|
Specification of how the value of the edge attribute should be obtained
|
||
|
from the edge attribute dictionary, G[u][v]. For multigraphs, G[u][v]
|
||
|
is a dictionary of all the edges between u and v. This allows for
|
||
|
special treatment of multiedges.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
value : function
|
||
|
A function expecting two nodes as parameters. The nodes should
|
||
|
represent the from- and to- node of an edge. The function will
|
||
|
return a value from G[u][v] that depends on `edge_attr`.
|
||
|
|
||
|
"""
|
||
|
|
||
|
if edge_attr is None:
|
||
|
# topological count of edges
|
||
|
|
||
|
if G.is_multigraph():
|
||
|
|
||
|
def value(u, v):
|
||
|
return len(G[u][v])
|
||
|
|
||
|
else:
|
||
|
|
||
|
def value(u, v):
|
||
|
return 1
|
||
|
|
||
|
elif not hasattr(edge_attr, "__call__"):
|
||
|
# assume it is a key for the edge attribute dictionary
|
||
|
|
||
|
if edge_attr == "weight":
|
||
|
# provide a default value
|
||
|
if G.is_multigraph():
|
||
|
|
||
|
def value(u, v):
|
||
|
return sum([d.get(edge_attr, 1) for d in G[u][v].values()])
|
||
|
|
||
|
else:
|
||
|
|
||
|
def value(u, v):
|
||
|
return G[u][v].get(edge_attr, 1)
|
||
|
|
||
|
else:
|
||
|
# otherwise, the edge attribute MUST exist for each edge
|
||
|
if G.is_multigraph():
|
||
|
|
||
|
def value(u, v):
|
||
|
return sum([d[edge_attr] for d in G[u][v].values()])
|
||
|
|
||
|
else:
|
||
|
|
||
|
def value(u, v):
|
||
|
return G[u][v][edge_attr]
|
||
|
|
||
|
else:
|
||
|
# Advanced: Allow users to specify something else.
|
||
|
#
|
||
|
# Alternative default value:
|
||
|
# edge_attr = lambda u,v: G[u][v].get('thickness', .5)
|
||
|
#
|
||
|
# Function on an attribute:
|
||
|
# edge_attr = lambda u,v: abs(G[u][v]['weight'])
|
||
|
#
|
||
|
# Handle Multi(Di)Graphs differently:
|
||
|
# edge_attr = lambda u,v: numpy.prod([d['size'] for d in G[u][v].values()])
|
||
|
#
|
||
|
# Ignore multiple edges
|
||
|
# edge_attr = lambda u,v: 1 if len(G[u][v]) else 0
|
||
|
#
|
||
|
value = edge_attr
|
||
|
|
||
|
return value
|
||
|
|
||
|
|
||
|
def attr_matrix(
|
||
|
G,
|
||
|
edge_attr=None,
|
||
|
node_attr=None,
|
||
|
normalized=False,
|
||
|
rc_order=None,
|
||
|
dtype=None,
|
||
|
order=None,
|
||
|
):
|
||
|
"""Returns a NumPy matrix using attributes from G.
|
||
|
|
||
|
If only `G` is passed in, then the adjacency matrix is constructed.
|
||
|
|
||
|
Let A be a discrete set of values for the node attribute `node_attr`. Then
|
||
|
the elements of A represent the rows and columns of the constructed matrix.
|
||
|
Now, iterate through every edge e=(u,v) in `G` and consider the value
|
||
|
of the edge attribute `edge_attr`. If ua and va are the values of the
|
||
|
node attribute `node_attr` for u and v, respectively, then the value of
|
||
|
the edge attribute is added to the matrix element at (ua, va).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : graph
|
||
|
The NetworkX graph used to construct the NumPy matrix.
|
||
|
|
||
|
edge_attr : str, optional
|
||
|
Each element of the matrix represents a running total of the
|
||
|
specified edge attribute for edges whose node attributes correspond
|
||
|
to the rows/cols of the matirx. The attribute must be present for
|
||
|
all edges in the graph. If no attribute is specified, then we
|
||
|
just count the number of edges whose node attributes correspond
|
||
|
to the matrix element.
|
||
|
|
||
|
node_attr : str, optional
|
||
|
Each row and column in the matrix represents a particular value
|
||
|
of the node attribute. The attribute must be present for all nodes
|
||
|
in the graph. Note, the values of this attribute should be reliably
|
||
|
hashable. So, float values are not recommended. If no attribute is
|
||
|
specified, then the rows and columns will be the nodes of the graph.
|
||
|
|
||
|
normalized : bool, optional
|
||
|
If True, then each row is normalized by the summation of its values.
|
||
|
|
||
|
rc_order : list, optional
|
||
|
A list of the node attribute values. This list specifies the ordering
|
||
|
of rows and columns of the array. If no ordering is provided, then
|
||
|
the ordering will be random (and also, a return value).
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
dtype : NumPy data-type, optional
|
||
|
A valid NumPy dtype used to initialize the array. Keep in mind certain
|
||
|
dtypes can yield unexpected results if the array is to be normalized.
|
||
|
The parameter is passed to numpy.zeros(). If unspecified, the NumPy
|
||
|
default is used.
|
||
|
|
||
|
order : {'C', 'F'}, optional
|
||
|
Whether to store multidimensional data in C- or Fortran-contiguous
|
||
|
(row- or column-wise) order in memory. This parameter is passed to
|
||
|
numpy.zeros(). If unspecified, the NumPy default is used.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
M : NumPy matrix
|
||
|
The attribute matrix.
|
||
|
|
||
|
ordering : list
|
||
|
If `rc_order` was specified, then only the matrix is returned.
|
||
|
However, if `rc_order` was None, then the ordering used to construct
|
||
|
the matrix is returned as well.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Construct an adjacency matrix:
|
||
|
|
||
|
>>> G = nx.Graph()
|
||
|
>>> G.add_edge(0, 1, thickness=1, weight=3)
|
||
|
>>> G.add_edge(0, 2, thickness=2)
|
||
|
>>> G.add_edge(1, 2, thickness=3)
|
||
|
>>> nx.attr_matrix(G, rc_order=[0, 1, 2])
|
||
|
matrix([[0., 1., 1.],
|
||
|
[1., 0., 1.],
|
||
|
[1., 1., 0.]])
|
||
|
|
||
|
Alternatively, we can obtain the matrix describing edge thickness.
|
||
|
|
||
|
>>> nx.attr_matrix(G, edge_attr="thickness", rc_order=[0, 1, 2])
|
||
|
matrix([[0., 1., 2.],
|
||
|
[1., 0., 3.],
|
||
|
[2., 3., 0.]])
|
||
|
|
||
|
We can also color the nodes and ask for the probability distribution over
|
||
|
all edges (u,v) describing:
|
||
|
|
||
|
Pr(v has color Y | u has color X)
|
||
|
|
||
|
>>> G.nodes[0]["color"] = "red"
|
||
|
>>> G.nodes[1]["color"] = "red"
|
||
|
>>> G.nodes[2]["color"] = "blue"
|
||
|
>>> rc = ["red", "blue"]
|
||
|
>>> nx.attr_matrix(G, node_attr="color", normalized=True, rc_order=rc)
|
||
|
matrix([[0.33333333, 0.66666667],
|
||
|
[1. , 0. ]])
|
||
|
|
||
|
For example, the above tells us that for all edges (u,v):
|
||
|
|
||
|
Pr( v is red | u is red) = 1/3
|
||
|
Pr( v is blue | u is red) = 2/3
|
||
|
|
||
|
Pr( v is red | u is blue) = 1
|
||
|
Pr( v is blue | u is blue) = 0
|
||
|
|
||
|
Finally, we can obtain the total weights listed by the node colors.
|
||
|
|
||
|
>>> nx.attr_matrix(G, edge_attr="weight", node_attr="color", rc_order=rc)
|
||
|
matrix([[3., 2.],
|
||
|
[2., 0.]])
|
||
|
|
||
|
Thus, the total weight over all edges (u,v) with u and v having colors:
|
||
|
|
||
|
(red, red) is 3 # the sole contribution is from edge (0,1)
|
||
|
(red, blue) is 2 # contributions from edges (0,2) and (1,2)
|
||
|
(blue, red) is 2 # same as (red, blue) since graph is undirected
|
||
|
(blue, blue) is 0 # there are no edges with blue endpoints
|
||
|
|
||
|
"""
|
||
|
try:
|
||
|
import numpy as np
|
||
|
except ImportError as e:
|
||
|
raise ImportError("attr_matrix() requires numpy: http://scipy.org/ ") from e
|
||
|
|
||
|
edge_value = _edge_value(G, edge_attr)
|
||
|
node_value = _node_value(G, node_attr)
|
||
|
|
||
|
if rc_order is None:
|
||
|
ordering = list({node_value(n) for n in G})
|
||
|
else:
|
||
|
ordering = rc_order
|
||
|
|
||
|
N = len(ordering)
|
||
|
undirected = not G.is_directed()
|
||
|
index = dict(zip(ordering, range(N)))
|
||
|
M = np.zeros((N, N), dtype=dtype, order=order)
|
||
|
|
||
|
seen = set()
|
||
|
for u, nbrdict in G.adjacency():
|
||
|
for v in nbrdict:
|
||
|
# Obtain the node attribute values.
|
||
|
i, j = index[node_value(u)], index[node_value(v)]
|
||
|
if v not in seen:
|
||
|
M[i, j] += edge_value(u, v)
|
||
|
if undirected:
|
||
|
M[j, i] = M[i, j]
|
||
|
|
||
|
if undirected:
|
||
|
seen.add(u)
|
||
|
|
||
|
if normalized:
|
||
|
M /= M.sum(axis=1).reshape((N, 1))
|
||
|
|
||
|
M = np.asmatrix(M)
|
||
|
|
||
|
if rc_order is None:
|
||
|
return M, ordering
|
||
|
else:
|
||
|
return M
|
||
|
|
||
|
|
||
|
def attr_sparse_matrix(
|
||
|
G, edge_attr=None, node_attr=None, normalized=False, rc_order=None, dtype=None
|
||
|
):
|
||
|
"""Returns a SciPy sparse matrix using attributes from G.
|
||
|
|
||
|
If only `G` is passed in, then the adjacency matrix is constructed.
|
||
|
|
||
|
Let A be a discrete set of values for the node attribute `node_attr`. Then
|
||
|
the elements of A represent the rows and columns of the constructed matrix.
|
||
|
Now, iterate through every edge e=(u,v) in `G` and consider the value
|
||
|
of the edge attribute `edge_attr`. If ua and va are the values of the
|
||
|
node attribute `node_attr` for u and v, respectively, then the value of
|
||
|
the edge attribute is added to the matrix element at (ua, va).
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : graph
|
||
|
The NetworkX graph used to construct the NumPy matrix.
|
||
|
|
||
|
edge_attr : str, optional
|
||
|
Each element of the matrix represents a running total of the
|
||
|
specified edge attribute for edges whose node attributes correspond
|
||
|
to the rows/cols of the matirx. The attribute must be present for
|
||
|
all edges in the graph. If no attribute is specified, then we
|
||
|
just count the number of edges whose node attributes correspond
|
||
|
to the matrix element.
|
||
|
|
||
|
node_attr : str, optional
|
||
|
Each row and column in the matrix represents a particular value
|
||
|
of the node attribute. The attribute must be present for all nodes
|
||
|
in the graph. Note, the values of this attribute should be reliably
|
||
|
hashable. So, float values are not recommended. If no attribute is
|
||
|
specified, then the rows and columns will be the nodes of the graph.
|
||
|
|
||
|
normalized : bool, optional
|
||
|
If True, then each row is normalized by the summation of its values.
|
||
|
|
||
|
rc_order : list, optional
|
||
|
A list of the node attribute values. This list specifies the ordering
|
||
|
of rows and columns of the array. If no ordering is provided, then
|
||
|
the ordering will be random (and also, a return value).
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
dtype : NumPy data-type, optional
|
||
|
A valid NumPy dtype used to initialize the array. Keep in mind certain
|
||
|
dtypes can yield unexpected results if the array is to be normalized.
|
||
|
The parameter is passed to numpy.zeros(). If unspecified, the NumPy
|
||
|
default is used.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
M : SciPy sparse matrix
|
||
|
The attribute matrix.
|
||
|
|
||
|
ordering : list
|
||
|
If `rc_order` was specified, then only the matrix is returned.
|
||
|
However, if `rc_order` was None, then the ordering used to construct
|
||
|
the matrix is returned as well.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Construct an adjacency matrix:
|
||
|
|
||
|
>>> G = nx.Graph()
|
||
|
>>> G.add_edge(0, 1, thickness=1, weight=3)
|
||
|
>>> G.add_edge(0, 2, thickness=2)
|
||
|
>>> G.add_edge(1, 2, thickness=3)
|
||
|
>>> M = nx.attr_sparse_matrix(G, rc_order=[0, 1, 2])
|
||
|
>>> M.todense()
|
||
|
matrix([[0., 1., 1.],
|
||
|
[1., 0., 1.],
|
||
|
[1., 1., 0.]])
|
||
|
|
||
|
Alternatively, we can obtain the matrix describing edge thickness.
|
||
|
|
||
|
>>> M = nx.attr_sparse_matrix(G, edge_attr="thickness", rc_order=[0, 1, 2])
|
||
|
>>> M.todense()
|
||
|
matrix([[0., 1., 2.],
|
||
|
[1., 0., 3.],
|
||
|
[2., 3., 0.]])
|
||
|
|
||
|
We can also color the nodes and ask for the probability distribution over
|
||
|
all edges (u,v) describing:
|
||
|
|
||
|
Pr(v has color Y | u has color X)
|
||
|
|
||
|
>>> G.nodes[0]["color"] = "red"
|
||
|
>>> G.nodes[1]["color"] = "red"
|
||
|
>>> G.nodes[2]["color"] = "blue"
|
||
|
>>> rc = ["red", "blue"]
|
||
|
>>> M = nx.attr_sparse_matrix(G, node_attr="color", normalized=True, rc_order=rc)
|
||
|
>>> M.todense()
|
||
|
matrix([[0.33333333, 0.66666667],
|
||
|
[1. , 0. ]])
|
||
|
|
||
|
For example, the above tells us that for all edges (u,v):
|
||
|
|
||
|
Pr( v is red | u is red) = 1/3
|
||
|
Pr( v is blue | u is red) = 2/3
|
||
|
|
||
|
Pr( v is red | u is blue) = 1
|
||
|
Pr( v is blue | u is blue) = 0
|
||
|
|
||
|
Finally, we can obtain the total weights listed by the node colors.
|
||
|
|
||
|
>>> M = nx.attr_sparse_matrix(G, edge_attr="weight", node_attr="color", rc_order=rc)
|
||
|
>>> M.todense()
|
||
|
matrix([[3., 2.],
|
||
|
[2., 0.]])
|
||
|
|
||
|
Thus, the total weight over all edges (u,v) with u and v having colors:
|
||
|
|
||
|
(red, red) is 3 # the sole contribution is from edge (0,1)
|
||
|
(red, blue) is 2 # contributions from edges (0,2) and (1,2)
|
||
|
(blue, red) is 2 # same as (red, blue) since graph is undirected
|
||
|
(blue, blue) is 0 # there are no edges with blue endpoints
|
||
|
|
||
|
"""
|
||
|
try:
|
||
|
import numpy as np
|
||
|
from scipy import sparse
|
||
|
except ImportError as e:
|
||
|
raise ImportError(
|
||
|
"attr_sparse_matrix() requires scipy: " "http://scipy.org/ "
|
||
|
) from e
|
||
|
|
||
|
edge_value = _edge_value(G, edge_attr)
|
||
|
node_value = _node_value(G, node_attr)
|
||
|
|
||
|
if rc_order is None:
|
||
|
ordering = list({node_value(n) for n in G})
|
||
|
else:
|
||
|
ordering = rc_order
|
||
|
|
||
|
N = len(ordering)
|
||
|
undirected = not G.is_directed()
|
||
|
index = dict(zip(ordering, range(N)))
|
||
|
M = sparse.lil_matrix((N, N), dtype=dtype)
|
||
|
|
||
|
seen = set()
|
||
|
for u, nbrdict in G.adjacency():
|
||
|
for v in nbrdict:
|
||
|
# Obtain the node attribute values.
|
||
|
i, j = index[node_value(u)], index[node_value(v)]
|
||
|
if v not in seen:
|
||
|
M[i, j] += edge_value(u, v)
|
||
|
if undirected:
|
||
|
M[j, i] = M[i, j]
|
||
|
|
||
|
if undirected:
|
||
|
seen.add(u)
|
||
|
|
||
|
if normalized:
|
||
|
norms = np.asarray(M.sum(axis=1)).ravel()
|
||
|
for i, norm in enumerate(norms):
|
||
|
M[i, :] /= norm
|
||
|
|
||
|
if rc_order is None:
|
||
|
return M, ordering
|
||
|
else:
|
||
|
return M
|