Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
407 lines
13 KiB
407 lines
13 KiB
4 years ago
|
"""Functions to convert NetworkX graphs to and from other formats.
|
||
|
|
||
|
The preferred way of converting data to a NetworkX graph is through the
|
||
|
graph constructor. The constructor calls the to_networkx_graph() function
|
||
|
which attempts to guess the input type and convert it automatically.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Create a graph with a single edge from a dictionary of dictionaries
|
||
|
|
||
|
>>> d = {0: {1: 1}} # dict-of-dicts single edge (0,1)
|
||
|
>>> G = nx.Graph(d)
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
nx_agraph, nx_pydot
|
||
|
"""
|
||
|
import warnings
|
||
|
import networkx as nx
|
||
|
from collections.abc import Collection, Generator, Iterator
|
||
|
|
||
|
__all__ = [
|
||
|
"to_networkx_graph",
|
||
|
"from_dict_of_dicts",
|
||
|
"to_dict_of_dicts",
|
||
|
"from_dict_of_lists",
|
||
|
"to_dict_of_lists",
|
||
|
"from_edgelist",
|
||
|
"to_edgelist",
|
||
|
]
|
||
|
|
||
|
|
||
|
def to_networkx_graph(data, create_using=None, multigraph_input=False):
|
||
|
"""Make a NetworkX graph from a known data structure.
|
||
|
|
||
|
The preferred way to call this is automatically
|
||
|
from the class constructor
|
||
|
|
||
|
>>> d = {0: {1: {"weight": 1}}} # dict-of-dicts single edge (0,1)
|
||
|
>>> G = nx.Graph(d)
|
||
|
|
||
|
instead of the equivalent
|
||
|
|
||
|
>>> G = nx.from_dict_of_dicts(d)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
data : object to be converted
|
||
|
|
||
|
Current known types are:
|
||
|
any NetworkX graph
|
||
|
dict-of-dicts
|
||
|
dict-of-lists
|
||
|
container (e.g. set, list, tuple) of edges
|
||
|
iterator (e.g. itertools.chain) that produces edges
|
||
|
generator of edges
|
||
|
Pandas DataFrame (row per edge)
|
||
|
numpy matrix
|
||
|
numpy ndarray
|
||
|
scipy sparse matrix
|
||
|
pygraphviz agraph
|
||
|
|
||
|
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
||
|
Graph type to create. If graph instance, then cleared before populated.
|
||
|
|
||
|
multigraph_input : bool (default False)
|
||
|
If True and data is a dict_of_dicts,
|
||
|
try to create a multigraph assuming dict_of_dict_of_lists.
|
||
|
If data and create_using are both multigraphs then create
|
||
|
a multigraph from a multigraph.
|
||
|
|
||
|
"""
|
||
|
# NX graph
|
||
|
if hasattr(data, "adj"):
|
||
|
try:
|
||
|
result = from_dict_of_dicts(
|
||
|
data.adj,
|
||
|
create_using=create_using,
|
||
|
multigraph_input=data.is_multigraph(),
|
||
|
)
|
||
|
if hasattr(data, "graph"): # data.graph should be dict-like
|
||
|
result.graph.update(data.graph)
|
||
|
if hasattr(data, "nodes"): # data.nodes should be dict-like
|
||
|
# result.add_node_from(data.nodes.items()) possible but
|
||
|
# for custom node_attr_dict_factory which may be hashable
|
||
|
# will be unexpected behavior
|
||
|
for n, dd in data.nodes.items():
|
||
|
result._node[n].update(dd)
|
||
|
return result
|
||
|
except Exception as e:
|
||
|
raise nx.NetworkXError("Input is not a correct NetworkX graph.") from e
|
||
|
|
||
|
# pygraphviz agraph
|
||
|
if hasattr(data, "is_strict"):
|
||
|
try:
|
||
|
return nx.nx_agraph.from_agraph(data, create_using=create_using)
|
||
|
except Exception as e:
|
||
|
raise nx.NetworkXError("Input is not a correct pygraphviz graph.") from e
|
||
|
|
||
|
# dict of dicts/lists
|
||
|
if isinstance(data, dict):
|
||
|
try:
|
||
|
return from_dict_of_dicts(
|
||
|
data, create_using=create_using, multigraph_input=multigraph_input
|
||
|
)
|
||
|
except:
|
||
|
try:
|
||
|
return from_dict_of_lists(data, create_using=create_using)
|
||
|
except Exception as e:
|
||
|
raise TypeError("Input is not known type.") from e
|
||
|
|
||
|
# Pandas DataFrame
|
||
|
try:
|
||
|
import pandas as pd
|
||
|
|
||
|
if isinstance(data, pd.DataFrame):
|
||
|
if data.shape[0] == data.shape[1]:
|
||
|
try:
|
||
|
return nx.from_pandas_adjacency(data, create_using=create_using)
|
||
|
except Exception as e:
|
||
|
msg = "Input is not a correct Pandas DataFrame adjacency matrix."
|
||
|
raise nx.NetworkXError(msg) from e
|
||
|
else:
|
||
|
try:
|
||
|
return nx.from_pandas_edgelist(
|
||
|
data, edge_attr=True, create_using=create_using
|
||
|
)
|
||
|
except Exception as e:
|
||
|
msg = "Input is not a correct Pandas DataFrame edge-list."
|
||
|
raise nx.NetworkXError(msg) from e
|
||
|
except ImportError:
|
||
|
msg = "pandas not found, skipping conversion test."
|
||
|
warnings.warn(msg, ImportWarning)
|
||
|
|
||
|
# numpy matrix or ndarray
|
||
|
try:
|
||
|
import numpy
|
||
|
|
||
|
if isinstance(data, (numpy.matrix, numpy.ndarray)):
|
||
|
try:
|
||
|
return nx.from_numpy_matrix(data, create_using=create_using)
|
||
|
except Exception as e:
|
||
|
raise nx.NetworkXError(
|
||
|
"Input is not a correct numpy matrix or array."
|
||
|
) from e
|
||
|
except ImportError:
|
||
|
warnings.warn("numpy not found, skipping conversion test.", ImportWarning)
|
||
|
|
||
|
# scipy sparse matrix - any format
|
||
|
try:
|
||
|
import scipy
|
||
|
|
||
|
if hasattr(data, "format"):
|
||
|
try:
|
||
|
return nx.from_scipy_sparse_matrix(data, create_using=create_using)
|
||
|
except Exception as e:
|
||
|
raise nx.NetworkXError(
|
||
|
"Input is not a correct scipy sparse matrix type."
|
||
|
) from e
|
||
|
except ImportError:
|
||
|
warnings.warn("scipy not found, skipping conversion test.", ImportWarning)
|
||
|
|
||
|
# Note: most general check - should remain last in order of execution
|
||
|
# Includes containers (e.g. list, set, dict, etc.), generators, and
|
||
|
# iterators (e.g. itertools.chain) of edges
|
||
|
|
||
|
if isinstance(data, (Collection, Generator, Iterator)):
|
||
|
try:
|
||
|
return from_edgelist(data, create_using=create_using)
|
||
|
except Exception as e:
|
||
|
raise nx.NetworkXError("Input is not a valid edge list") from e
|
||
|
|
||
|
raise nx.NetworkXError("Input is not a known data type for conversion.")
|
||
|
|
||
|
|
||
|
def to_dict_of_lists(G, nodelist=None):
|
||
|
"""Returns adjacency representation of graph as a dictionary of lists.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : graph
|
||
|
A NetworkX graph
|
||
|
|
||
|
nodelist : list
|
||
|
Use only nodes specified in nodelist
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Completely ignores edge data for MultiGraph and MultiDiGraph.
|
||
|
|
||
|
"""
|
||
|
if nodelist is None:
|
||
|
nodelist = G
|
||
|
|
||
|
d = {}
|
||
|
for n in nodelist:
|
||
|
d[n] = [nbr for nbr in G.neighbors(n) if nbr in nodelist]
|
||
|
return d
|
||
|
|
||
|
|
||
|
def from_dict_of_lists(d, create_using=None):
|
||
|
"""Returns a graph from a dictionary of lists.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
d : dictionary of lists
|
||
|
A dictionary of lists adjacency representation.
|
||
|
|
||
|
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
||
|
Graph type to create. If graph instance, then cleared before populated.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> dol = {0: [1]} # single edge (0,1)
|
||
|
>>> G = nx.from_dict_of_lists(dol)
|
||
|
|
||
|
or
|
||
|
|
||
|
>>> G = nx.Graph(dol) # use Graph constructor
|
||
|
|
||
|
"""
|
||
|
G = nx.empty_graph(0, create_using)
|
||
|
G.add_nodes_from(d)
|
||
|
if G.is_multigraph() and not G.is_directed():
|
||
|
# a dict_of_lists can't show multiedges. BUT for undirected graphs,
|
||
|
# each edge shows up twice in the dict_of_lists.
|
||
|
# So we need to treat this case separately.
|
||
|
seen = {}
|
||
|
for node, nbrlist in d.items():
|
||
|
for nbr in nbrlist:
|
||
|
if nbr not in seen:
|
||
|
G.add_edge(node, nbr)
|
||
|
seen[node] = 1 # don't allow reverse edge to show up
|
||
|
else:
|
||
|
G.add_edges_from(
|
||
|
((node, nbr) for node, nbrlist in d.items() for nbr in nbrlist)
|
||
|
)
|
||
|
return G
|
||
|
|
||
|
|
||
|
def to_dict_of_dicts(G, nodelist=None, edge_data=None):
|
||
|
"""Returns adjacency representation of graph as a dictionary of dictionaries.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : graph
|
||
|
A NetworkX graph
|
||
|
|
||
|
nodelist : list
|
||
|
Use only nodes specified in nodelist
|
||
|
|
||
|
edge_data : list, optional
|
||
|
If provided, the value of the dictionary will be
|
||
|
set to edge_data for all edges. This is useful to make
|
||
|
an adjacency matrix type representation with 1 as the edge data.
|
||
|
If edgedata is None, the edgedata in G is used to fill the values.
|
||
|
If G is a multigraph, the edgedata is a dict for each pair (u,v).
|
||
|
"""
|
||
|
dod = {}
|
||
|
if nodelist is None:
|
||
|
if edge_data is None:
|
||
|
for u, nbrdict in G.adjacency():
|
||
|
dod[u] = nbrdict.copy()
|
||
|
else: # edge_data is not None
|
||
|
for u, nbrdict in G.adjacency():
|
||
|
dod[u] = dod.fromkeys(nbrdict, edge_data)
|
||
|
else: # nodelist is not None
|
||
|
if edge_data is None:
|
||
|
for u in nodelist:
|
||
|
dod[u] = {}
|
||
|
for v, data in ((v, data) for v, data in G[u].items() if v in nodelist):
|
||
|
dod[u][v] = data
|
||
|
else: # nodelist and edge_data are not None
|
||
|
for u in nodelist:
|
||
|
dod[u] = {}
|
||
|
for v in (v for v in G[u] if v in nodelist):
|
||
|
dod[u][v] = edge_data
|
||
|
return dod
|
||
|
|
||
|
|
||
|
def from_dict_of_dicts(d, create_using=None, multigraph_input=False):
|
||
|
"""Returns a graph from a dictionary of dictionaries.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
d : dictionary of dictionaries
|
||
|
A dictionary of dictionaries adjacency representation.
|
||
|
|
||
|
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
||
|
Graph type to create. If graph instance, then cleared before populated.
|
||
|
|
||
|
multigraph_input : bool (default False)
|
||
|
When True, the values of the inner dict are assumed
|
||
|
to be containers of edge data for multiple edges.
|
||
|
Otherwise this routine assumes the edge data are singletons.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> dod = {0: {1: {"weight": 1}}} # single edge (0,1)
|
||
|
>>> G = nx.from_dict_of_dicts(dod)
|
||
|
|
||
|
or
|
||
|
|
||
|
>>> G = nx.Graph(dod) # use Graph constructor
|
||
|
|
||
|
"""
|
||
|
G = nx.empty_graph(0, create_using)
|
||
|
G.add_nodes_from(d)
|
||
|
# is dict a MultiGraph or MultiDiGraph?
|
||
|
if multigraph_input:
|
||
|
# make a copy of the list of edge data (but not the edge data)
|
||
|
if G.is_directed():
|
||
|
if G.is_multigraph():
|
||
|
G.add_edges_from(
|
||
|
(u, v, key, data)
|
||
|
for u, nbrs in d.items()
|
||
|
for v, datadict in nbrs.items()
|
||
|
for key, data in datadict.items()
|
||
|
)
|
||
|
else:
|
||
|
G.add_edges_from(
|
||
|
(u, v, data)
|
||
|
for u, nbrs in d.items()
|
||
|
for v, datadict in nbrs.items()
|
||
|
for key, data in datadict.items()
|
||
|
)
|
||
|
else: # Undirected
|
||
|
if G.is_multigraph():
|
||
|
seen = set() # don't add both directions of undirected graph
|
||
|
for u, nbrs in d.items():
|
||
|
for v, datadict in nbrs.items():
|
||
|
if (u, v) not in seen:
|
||
|
G.add_edges_from(
|
||
|
(u, v, key, data) for key, data in datadict.items()
|
||
|
)
|
||
|
seen.add((v, u))
|
||
|
else:
|
||
|
seen = set() # don't add both directions of undirected graph
|
||
|
for u, nbrs in d.items():
|
||
|
for v, datadict in nbrs.items():
|
||
|
if (u, v) not in seen:
|
||
|
G.add_edges_from(
|
||
|
(u, v, data) for key, data in datadict.items()
|
||
|
)
|
||
|
seen.add((v, u))
|
||
|
|
||
|
else: # not a multigraph to multigraph transfer
|
||
|
if G.is_multigraph() and not G.is_directed():
|
||
|
# d can have both representations u-v, v-u in dict. Only add one.
|
||
|
# We don't need this check for digraphs since we add both directions,
|
||
|
# or for Graph() since it is done implicitly (parallel edges not allowed)
|
||
|
seen = set()
|
||
|
for u, nbrs in d.items():
|
||
|
for v, data in nbrs.items():
|
||
|
if (u, v) not in seen:
|
||
|
G.add_edge(u, v, key=0)
|
||
|
G[u][v][0].update(data)
|
||
|
seen.add((v, u))
|
||
|
else:
|
||
|
G.add_edges_from(
|
||
|
((u, v, data) for u, nbrs in d.items() for v, data in nbrs.items())
|
||
|
)
|
||
|
return G
|
||
|
|
||
|
|
||
|
def to_edgelist(G, nodelist=None):
|
||
|
"""Returns a list of edges in the graph.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : graph
|
||
|
A NetworkX graph
|
||
|
|
||
|
nodelist : list
|
||
|
Use only nodes specified in nodelist
|
||
|
|
||
|
"""
|
||
|
if nodelist is None:
|
||
|
return G.edges(data=True)
|
||
|
return G.edges(nodelist, data=True)
|
||
|
|
||
|
|
||
|
def from_edgelist(edgelist, create_using=None):
|
||
|
"""Returns a graph from a list of edges.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
edgelist : list or iterator
|
||
|
Edge tuples
|
||
|
|
||
|
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
||
|
Graph type to create. If graph instance, then cleared before populated.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> edgelist = [(0, 1)] # single edge (0,1)
|
||
|
>>> G = nx.from_edgelist(edgelist)
|
||
|
|
||
|
or
|
||
|
|
||
|
>>> G = nx.Graph(edgelist) # use Graph constructor
|
||
|
|
||
|
"""
|
||
|
G = nx.empty_graph(0, create_using)
|
||
|
G.add_edges_from(edgelist)
|
||
|
return G
|