1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/venv/lib/python3.9/site-packages/networkx-2.5.dist-info/METADATA

143 lines
4.7 KiB

Metadata-Version: 2.1
Name: networkx
Version: 2.5
Summary: Python package for creating and manipulating graphs and networks
Home-page: http://networkx.github.io/
Author: Aric Hagberg
Author-email: hagberg@lanl.gov
Maintainer: NetworkX Developers
Maintainer-email: networkx-discuss@googlegroups.com
License: UNKNOWN
Project-URL: Bug Tracker, https://github.com/networkx/networkx/issues
Project-URL: Documentation, https://networkx.github.io/documentation/stable/
Project-URL: Source Code, https://github.com/networkx/networkx
Keywords: Networks,Graph Theory,Mathematics,network,graph,discrete mathematics,math
Platform: Linux
Platform: Mac OSX
Platform: Windows
Platform: Unix
Classifier: Development Status :: 5 - Production/Stable
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Science/Research
Classifier: License :: OSI Approved :: BSD License
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.6
Classifier: Programming Language :: Python :: 3.7
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3 :: Only
Classifier: Topic :: Software Development :: Libraries :: Python Modules
Classifier: Topic :: Scientific/Engineering :: Bio-Informatics
Classifier: Topic :: Scientific/Engineering :: Information Analysis
Classifier: Topic :: Scientific/Engineering :: Mathematics
Classifier: Topic :: Scientific/Engineering :: Physics
Requires-Python: >=3.6
Requires-Dist: decorator (>=4.3.0)
Provides-Extra: all
Requires-Dist: numpy ; extra == 'all'
Requires-Dist: scipy ; extra == 'all'
Requires-Dist: pandas ; extra == 'all'
Requires-Dist: matplotlib ; extra == 'all'
Requires-Dist: pygraphviz ; extra == 'all'
Requires-Dist: pydot ; extra == 'all'
Requires-Dist: pyyaml ; extra == 'all'
Requires-Dist: lxml ; extra == 'all'
Requires-Dist: pytest ; extra == 'all'
Provides-Extra: gdal
Requires-Dist: gdal ; extra == 'gdal'
Provides-Extra: lxml
Requires-Dist: lxml ; extra == 'lxml'
Provides-Extra: matplotlib
Requires-Dist: matplotlib ; extra == 'matplotlib'
Provides-Extra: numpy
Requires-Dist: numpy ; extra == 'numpy'
Provides-Extra: pandas
Requires-Dist: pandas ; extra == 'pandas'
Provides-Extra: pydot
Requires-Dist: pydot ; extra == 'pydot'
Provides-Extra: pygraphviz
Requires-Dist: pygraphviz ; extra == 'pygraphviz'
Provides-Extra: pytest
Requires-Dist: pytest ; extra == 'pytest'
Provides-Extra: pyyaml
Requires-Dist: pyyaml ; extra == 'pyyaml'
Provides-Extra: scipy
Requires-Dist: scipy ; extra == 'scipy'
NetworkX
========
.. image:: https://img.shields.io/pypi/v/networkx.svg
:target: https://pypi.org/project/networkx/
.. image:: https://img.shields.io/pypi/pyversions/networkx.svg
:target: https://pypi.org/project/networkx/
.. image:: https://travis-ci.org/networkx/networkx.svg?branch=master
:target: https://travis-ci.org/networkx/networkx
.. image:: https://ci.appveyor.com/api/projects/status/github/networkx/networkx?branch=master&svg=true
:target: https://ci.appveyor.com/project/dschult/networkx-pqott
.. image:: https://codecov.io/gh/networkx/networkx/branch/master/graph/badge.svg
:target: https://codecov.io/gh/networkx/networkx
NetworkX is a Python package for the creation, manipulation,
and study of the structure, dynamics, and functions
of complex networks.
- **Website (including documentation):** https://networkx.github.io
- **Mailing list:** https://groups.google.com/forum/#!forum/networkx-discuss
- **Source:** https://github.com/networkx/networkx
- **Bug reports:** https://github.com/networkx/networkx/issues
Simple example
--------------
Find the shortest path between two nodes in an undirected graph:
.. code:: python
>>> import networkx as nx
>>> G = nx.Graph()
>>> G.add_edge('A', 'B', weight=4)
>>> G.add_edge('B', 'D', weight=2)
>>> G.add_edge('A', 'C', weight=3)
>>> G.add_edge('C', 'D', weight=4)
>>> nx.shortest_path(G, 'A', 'D', weight='weight')
['A', 'B', 'D']
Install
-------
Install the latest version of NetworkX::
$ pip install networkx
Install with all optional dependencies::
$ pip install networkx[all]
For additional details, please see `INSTALL.rst`.
Bugs
----
Please report any bugs that you find `here <https://github.com/networkx/networkx/issues>`_.
Or, even better, fork the repository on `GitHub <https://github.com/networkx/networkx>`_
and create a pull request (PR). We welcome all changes, big or small, and we
will help you make the PR if you are new to `git` (just ask on the issue and/or
see `CONTRIBUTING.rst`).
License
-------
Released under the 3-Clause BSD license (see `LICENSE.txt`)::
Copyright (C) 2004-2020 NetworkX Developers
Aric Hagberg <hagberg@lanl.gov>
Dan Schult <dschult@colgate.edu>
Pieter Swart <swart@lanl.gov>