1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/main_package/tests/utility/test_sample_importer.py

82 lines
2.6 KiB

import sys
sys.path.append("../../classes/")
import unittest
import os
import glob
import numpy as np
import pandas as pd
import utility.sample_importer as si
import structure_graph.sample_path as sp
import json
class TestSampleImporter(unittest.TestCase):
@classmethod
def setUpClass(cls) -> None:
with open("../../data/networks_and_trajectories_binary_data_01_3.json") as f:
raw_data = json.load(f)
trajectory_list_raw= raw_data[0]["samples"]
cls.trajectory_list = [pd.DataFrame(sample) for sample in trajectory_list_raw]
cls.variables= pd.DataFrame(raw_data[0]["variables"])
cls.prior_net_structure = pd.DataFrame(raw_data[0]["dyn.str"])
def test_init(self):
sample_importer = si.SampleImporter(
trajectory_list=self.trajectory_list,
variables=self.variables,
prior_net_structure=self.prior_net_structure
)
sample_importer.import_data()
s1 = sp.SamplePath(sample_importer)
s1.build_trajectories()
s1.build_structure()
s1.clear_memory()
self.assertEqual(len(s1._importer._df_samples_list), 300)
self.assertIsInstance(s1._importer._df_samples_list,list)
self.assertIsInstance(s1._importer._df_samples_list[0],pd.DataFrame)
self.assertEqual(len(s1._importer._df_variables), 3)
self.assertIsInstance(s1._importer._df_variables,pd.DataFrame)
self.assertEqual(len(s1._importer._df_structure), 2)
self.assertIsInstance(s1._importer._df_structure,pd.DataFrame)
def test_order(self):
sample_importer = si.SampleImporter(
trajectory_list=self.trajectory_list,
variables=self.variables,
prior_net_structure=self.prior_net_structure
)
sample_importer.import_data()
s1 = sp.SamplePath(sample_importer)
s1.build_trajectories()
s1.build_structure()
s1.clear_memory()
for count,var in enumerate(s1._importer._df_samples_list[0].columns[1:]):
self.assertEqual(s1._importer._sorter[count],var)
def ordered(self, obj):
if isinstance(obj, dict):
return sorted((k, self.ordered(v)) for k, v in obj.items())
if isinstance(obj, list):
return sorted(self.ordered(x) for x in obj)
else:
return obj
if __name__ == '__main__':
unittest.main()