1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/main_package/classes/structure_graph/conditional_intensity_matri...

47 lines
1.4 KiB

import numpy as np
import sys
sys.path.append('../')
class ConditionalIntensityMatrix:
"""
Abstracts the Conditional Intesity matrix of a node as aggregation of the state residence times vector
and state transition matrix and the actual CIM matrix.
:_state_residence_times: state residence times vector
:_state_transition_matrix: the transitions count matrix
:_cim: the actual cim of the node
"""
def __init__(self, state_residence_times: np.array, state_transition_matrix: np.array):
self._state_residence_times = state_residence_times
self._state_transition_matrix = state_transition_matrix
self._cim = self.state_transition_matrix.astype(np.float64)
def compute_cim_coefficients(self):
"""
Compute the coefficients of the matrix _cim by using the following equality q_xx' = M[x, x'] / T[x]
Parameters:
void
Returns:
void
"""
np.fill_diagonal(self._cim, self._cim.diagonal() * -1)
self._cim = ((self._cim.T + 1) / (self._state_residence_times + 1)).T
@property
def state_residence_times(self):
return self._state_residence_times
@property
def state_transition_matrix(self):
return self._state_transition_matrix
@property
def cim(self):
return self._cim
def __repr__(self):
return 'CIM:\n' + str(self.cim)