1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/main_package/classes/optimizers/constraint_based_optimizer.py

85 lines
2.5 KiB

import sys
sys.path.append('../')
import itertools
import json
import typing
import networkx as nx
import numpy as np
from networkx.readwrite import json_graph
from random import choice
from abc import ABC
import copy
from optimizers.optimizer import Optimizer
from estimators import structure_estimator as se
import structure_graph.network_graph as ng
class ConstraintBasedOptimizer(Optimizer):
"""
Optimizer class that implement Hill Climbing Search
"""
def __init__(self,
node_id:str,
structure_estimator: se.StructureEstimator,
tot_vars_count:int
):
"""
Compute Optimization process for a structure_estimator
"""
super().__init__(node_id, structure_estimator)
self.tot_vars_count = tot_vars_count
def optimize_structure(self):
"""
Compute Optimization process for a structure_estimator
Parameters:
Returns:
the estimated structure for the node
"""
print("##################TESTING VAR################", self.node_id)
graph = ng.NetworkGraph(self.structure_estimator.sample_path.structure)
other_nodes = [node for node in self.structure_estimator.sample_path.structure.nodes_labels if node != self.node_id]
for possible_parent in other_nodes:
graph.add_edges([(possible_parent,self.node_id)])
u = other_nodes
#tests_parents_numb = len(u)
#complete_frame = self.complete_graph_frame
#test_frame = complete_frame.loc[complete_frame['To'].isin([self.node_id])]
child_states_numb = self.structure_estimator.sample_path.structure.get_states_number(self.node_id)
b = 0
while b < len(u):
parent_indx = 0
while parent_indx < len(u):
removed = False
S = self.structure_estimator.generate_possible_sub_sets_of_size(u, b, u[parent_indx])
test_parent = u[parent_indx]
for parents_set in S:
if self.structure_estimator.complete_test(test_parent, self.node_id, parents_set, child_states_numb, self.tot_vars_count):
graph.remove_edges([(test_parent, self.node_id)])
u.remove(test_parent)
removed = True
break
if not removed:
parent_indx += 1
b += 1
self.structure_estimator.cache.clear()
return graph.edges