Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
144 lines
7.3 KiB
144 lines
7.3 KiB
4 years ago
|
import sys
|
||
|
sys.path.append('../')
|
||
|
import numpy as np
|
||
|
|
||
|
from ..structure_graph.network_graph import NetworkGraph
|
||
|
from ..structure_graph.sample_path import SetOfCims
|
||
|
from ..structure_graph.trajectory import Trajectory
|
||
|
|
||
|
|
||
|
class ParametersEstimator(object):
|
||
|
"""Has the task of computing the cims of particular node given the trajectories and the net structure
|
||
|
in the graph ``_net_graph``.
|
||
|
|
||
|
:param trajectories: the trajectories
|
||
|
:type trajectories: Trajectory
|
||
|
:param net_graph: the net structure
|
||
|
:type net_graph: NetworkGraph
|
||
|
:_single_set_of_cims: the set of cims object that will hold the cims of the node
|
||
|
"""
|
||
|
|
||
|
def __init__(self, trajectories: Trajectory, net_graph: NetworkGraph):
|
||
|
"""Constructor Method
|
||
|
"""
|
||
|
self._trajectories = trajectories
|
||
|
self._net_graph = net_graph
|
||
|
self._single_set_of_cims = None
|
||
|
|
||
|
def fast_init(self, node_id: str) -> None:
|
||
|
"""Initializes all the necessary structures for the parameters estimation for the node ``node_id``.
|
||
|
|
||
|
:param node_id: the node label
|
||
|
:type node_id: string
|
||
|
"""
|
||
|
p_vals = self._net_graph._aggregated_info_about_nodes_parents[2]
|
||
|
node_states_number = self._net_graph.get_states_number(node_id)
|
||
|
self._single_set_of_cims = SetOfCims(node_id, p_vals, node_states_number, self._net_graph.p_combs)
|
||
|
|
||
|
def compute_parameters_for_node(self, node_id: str) -> SetOfCims:
|
||
|
"""Compute the CIMS of the node identified by the label ``node_id``.
|
||
|
|
||
|
:param node_id: the node label
|
||
|
:type node_id: string
|
||
|
:return: A SetOfCims object filled with the computed CIMS
|
||
|
:rtype: SetOfCims
|
||
|
"""
|
||
|
node_indx = self._net_graph.get_node_indx(node_id)
|
||
|
state_res_times = self._single_set_of_cims._state_residence_times
|
||
|
transition_matrices = self._single_set_of_cims._transition_matrices
|
||
|
ParametersEstimator.compute_state_res_time_for_node(self._trajectories.times,
|
||
|
self._trajectories.trajectory,
|
||
|
self._net_graph.time_filtering,
|
||
|
self._net_graph.time_scalar_indexing_strucure,
|
||
|
state_res_times)
|
||
|
ParametersEstimator.compute_state_transitions_for_a_node(node_indx, self._trajectories.complete_trajectory,
|
||
|
self._net_graph.transition_filtering,
|
||
|
self._net_graph.transition_scalar_indexing_structure,
|
||
|
transition_matrices)
|
||
|
self._single_set_of_cims.build_cims(state_res_times, transition_matrices)
|
||
|
return self._single_set_of_cims
|
||
|
|
||
|
@staticmethod
|
||
|
def compute_state_res_time_for_node(times: np.ndarray, trajectory: np.ndarray,
|
||
|
cols_filter: np.ndarray, scalar_indexes_struct: np.ndarray,
|
||
|
T: np.ndarray) -> None:
|
||
|
"""Compute the state residence times for a node and fill the matrix ``T`` with the results
|
||
|
|
||
|
:param node_indx: the index of the node
|
||
|
:type node_indx: int
|
||
|
:param times: the times deltas vector
|
||
|
:type times: numpy.array
|
||
|
:param trajectory: the trajectory
|
||
|
:type trajectory: numpy.ndArray
|
||
|
:param cols_filter: the columns filtering structure
|
||
|
:type cols_filter: numpy.array
|
||
|
:param scalar_indexes_struct: the indexing structure
|
||
|
:type scalar_indexes_struct: numpy.array
|
||
|
:param T: the state residence times vectors
|
||
|
:type T: numpy.ndArray
|
||
|
"""
|
||
|
T[:] = np.bincount(np.sum(trajectory[:, cols_filter] * scalar_indexes_struct / scalar_indexes_struct[0], axis=1)
|
||
|
.astype(np.int), \
|
||
|
times,
|
||
|
minlength=scalar_indexes_struct[-1]).reshape(-1, T.shape[1])
|
||
|
|
||
|
@staticmethod
|
||
|
def compute_state_transitions_for_a_node(node_indx: int, trajectory: np.ndarray, cols_filter: np.ndarray,
|
||
|
scalar_indexing: np.ndarray, M: np.ndarray) -> None:
|
||
|
"""Compute the state residence times for a node and fill the matrices ``M`` with the results.
|
||
|
|
||
|
:param node_indx: the index of the node
|
||
|
:type node_indx: int
|
||
|
:param trajectory: the trajectory
|
||
|
:type trajectory: numpy.ndArray
|
||
|
:param cols_filter: the columns filtering structure
|
||
|
:type cols_filter: numpy.array
|
||
|
:param scalar_indexing: the indexing structure
|
||
|
:type scalar_indexing: numpy.array
|
||
|
:param M: the state transitions matrices
|
||
|
:type M: numpy.ndArray
|
||
|
"""
|
||
|
diag_indices = np.array([x * M.shape[1] + x % M.shape[1] for x in range(M.shape[0] * M.shape[1])],
|
||
|
dtype=np.int64)
|
||
|
trj_tmp = trajectory[trajectory[:, int(trajectory.shape[1] / 2) + node_indx].astype(np.int) >= 0]
|
||
|
M[:] = np.bincount(np.sum(trj_tmp[:, cols_filter] * scalar_indexing / scalar_indexing[0], axis=1).astype(np.int)
|
||
|
, minlength=scalar_indexing[-1]).reshape(-1, M.shape[1], M.shape[2])
|
||
|
M_raveled = M.ravel()
|
||
|
M_raveled[diag_indices] = 0
|
||
|
M_raveled[diag_indices] = np.sum(M, axis=2).ravel()
|
||
|
|
||
|
def init_sets_cims_container(self):
|
||
|
self.sets_of_cims_struct = acims.SetsOfCimsContainer(self.net_graph.nodes,
|
||
|
self.net_graph.nodes_values,
|
||
|
self.net_graph.get_ordered_by_indx_parents_values_for_all_nodes(),
|
||
|
self.net_graph.p_combs)
|
||
|
|
||
|
def compute_parameters(self):
|
||
|
#print(self.net_graph.get_nodes())
|
||
|
#print(self.amalgamated_cims_struct.sets_of_cims)
|
||
|
#enumerate(zip(self.net_graph.get_nodes(), self.amalgamated_cims_struct.sets_of_cims))
|
||
|
for indx, aggr in enumerate(zip(self.net_graph.nodes, self.sets_of_cims_struct.sets_of_cims)):
|
||
|
#print(self.net_graph.time_filtering[indx])
|
||
|
#print(self.net_graph.time_scalar_indexing_strucure[indx])
|
||
|
self.compute_state_res_time_for_node(self.net_graph.get_node_indx(aggr[0]), self.sample_path.trajectories.times,
|
||
|
self.sample_path.trajectories.trajectory,
|
||
|
self.net_graph.time_filtering[indx],
|
||
|
self.net_graph.time_scalar_indexing_strucure[indx],
|
||
|
aggr[1]._state_residence_times)
|
||
|
#print(self.net_graph.transition_filtering[indx])
|
||
|
#print(self.net_graph.transition_scalar_indexing_structure[indx])
|
||
|
self.compute_state_transitions_for_a_node(self.net_graph.get_node_indx(aggr[0]),
|
||
|
self.sample_path.trajectories.complete_trajectory,
|
||
|
self.net_graph.transition_filtering[indx],
|
||
|
self.net_graph.transition_scalar_indexing_structure[indx],
|
||
|
aggr[1]._transition_matrices)
|
||
|
aggr[1].build_cims(aggr[1]._state_residence_times, aggr[1]._transition_matrices)
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|