1
0
Fork 0
Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍 https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
PyCTBN/main_package/tests/test_parameters_estimator.py

86 lines
3.2 KiB

import unittest
import numpy as np
4 years ago
from line_profiler import LineProfiler
import network_graph as ng
import sample_path as sp
import set_of_cims as sofc
import sets_of_cims_container as scc
import parameters_estimator as pe
import json_importer as ji
#TODO bisogna trovare un modo per testare i metodi che stimano i tempi e le transizioni per i singoli nodi
class TestParametersEstimatior(unittest.TestCase):
@classmethod
def setUpClass(cls) -> None:
cls.s1 = sp.SamplePath('../data', 'samples', 'dyn.str', 'variables', 'Time', 'Name')
cls.s1.build_trajectories()
cls.s1.build_structure()
cls.g1 = ng.NetworkGraph(cls.s1.structure)
cls.g1.init_graph()
def test_fast_init(self):
for node in self.g1.nodes:
g = ng.NetworkGraph(self.s1.structure)
g.fast_init(node)
p1 = pe.ParametersEstimator(self.s1, g)
self.assertEqual(p1.sample_path, self.s1)
self.assertEqual(p1.net_graph, g)
self.assertIsNone(p1.single_set_of_cims)
p1.fast_init(node)
self.assertIsInstance(p1.single_set_of_cims, sofc.SetOfCims)
def test_compute_parameters_for_node(self):
for indx, node in enumerate(self.g1.nodes):
print(node)
g = ng.NetworkGraph(self.s1.structure)
g.fast_init(node)
p1 = pe.ParametersEstimator(self.s1, g)
p1.fast_init(node)
sofc1 = p1.compute_parameters_for_node(node)
sampled_cims = self.aux_import_sampled_cims('dyn.cims')
sc = list(sampled_cims.values())
print(sc[indx])
self.equality_of_cims_of_node(sc[indx], sofc1.actual_cims)
def equality_of_cims_of_node(self, sampled_cims, estimated_cims):
#print(sampled_cims)
print(estimated_cims)
self.assertEqual(len(sampled_cims), len(estimated_cims))
for c1, c2 in zip(sampled_cims, estimated_cims):
self.cim_equality_test(c1, c2.cim)
def cim_equality_test(self, cim1, cim2):
for r1, r2 in zip(cim1, cim2):
self.assertTrue(np.all(np.isclose(r1, r2, 1e-01, 1e-01) == True))
def aux_import_sampled_cims(self, cims_label):
i1 = ji.JsonImporter('../data', '', '', '', '', '')
raw_data = i1.read_json_file()
return i1.import_sampled_cims(raw_data, 0, cims_label)
"""
def test_init(self):
self.aux_test_init(self.s1, self.g1)
def test_init_sets_of_cims_container(self):
self.aux_test_init_sets_cims_container(self.s1, self.g1)
def aux_test_init(self, sample_p, graph):
pe1 = pe.ParametersEstimator(sample_p, graph)
self.assertEqual(sample_p, pe1.sample_path)
self.assertEqual(graph, pe1.net_graph)
self.assertIsNone(pe1.sets_of_cims_struct)
def aux_test_init_sets_cims_container(self, sample_p, graph):
pe1 = pe.ParametersEstimator(sample_p, graph)
pe1.init_sets_cims_container()
self.assertIsInstance(pe1.sets_of_cims_struct, scc.SetsOfCimsContainer)
def test_compute_parameters(self):
self.aux_test_compute_parameters(self.s1, self.g1)
"""
if __name__ == '__main__':
unittest.main()