Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
119 lines
5.0 KiB
119 lines
5.0 KiB
4 years ago
|
|
||
4 years ago
|
# License: MIT License
|
||
|
|
||
|
|
||
4 years ago
|
import glob
|
||
|
import math
|
||
|
import os
|
||
|
import unittest
|
||
|
import json
|
||
|
import networkx as nx
|
||
|
import numpy as np
|
||
|
import timeit
|
||
|
|
||
3 years ago
|
from pyctbn.legacy.utility.cache import Cache
|
||
|
from pyctbn.legacy.structure_graph.sample_path import SamplePath
|
||
|
from pyctbn.legacy.estimators.structure_constraint_based_estimator import StructureConstraintBasedEstimator
|
||
|
from pyctbn.legacy.utility.json_importer import JsonImporter
|
||
4 years ago
|
|
||
|
|
||
|
class TestStructureEstimator(unittest.TestCase):
|
||
|
|
||
|
@classmethod
|
||
|
def setUpClass(cls):
|
||
3 years ago
|
cls.read_files = glob.glob(os.path.join('./tests/data', "*.json"))
|
||
|
cls.importer = JsonImporter('./tests/data/networks_and_trajectories_binary_data_01_3.json', 'samples', 'dyn.str', 'variables', 'Time', 'Name')
|
||
4 years ago
|
cls.importer.import_data(0)
|
||
|
cls.s1 = SamplePath(cls.importer)
|
||
|
cls.s1.build_trajectories()
|
||
|
cls.s1.build_structure()
|
||
4 years ago
|
cls.real_net_structure = nx.DiGraph(cls.s1.structure.edges)
|
||
4 years ago
|
|
||
|
def test_init(self):
|
||
|
exp_alfa = 0.1
|
||
|
chi_alfa = 0.1
|
||
|
se1 = StructureConstraintBasedEstimator(self.s1, exp_alfa, chi_alfa)
|
||
|
self.assertEqual(self.s1, se1._sample_path)
|
||
|
self.assertTrue(np.array_equal(se1._nodes, np.array(self.s1.structure.nodes_labels)))
|
||
|
self.assertTrue(np.array_equal(se1._nodes_indxs, self.s1.structure.nodes_indexes))
|
||
|
self.assertTrue(np.array_equal(se1._nodes_vals, self.s1.structure.nodes_values))
|
||
|
self.assertEqual(se1._exp_test_sign, exp_alfa)
|
||
|
self.assertEqual(se1._chi_test_alfa, chi_alfa)
|
||
|
self.assertIsInstance(se1._complete_graph, nx.DiGraph)
|
||
|
self.assertIsInstance(se1._cache, Cache)
|
||
|
|
||
|
def test_build_complete_graph(self):
|
||
|
exp_alfa = 0.1
|
||
|
chi_alfa = 0.1
|
||
|
nodes_numb = len(self.s1.structure.nodes_labels)
|
||
|
se1 = StructureConstraintBasedEstimator(self.s1, exp_alfa, chi_alfa)
|
||
|
cg = se1.build_complete_graph(self.s1.structure.nodes_labels)
|
||
|
self.assertEqual(len(cg.edges), nodes_numb*(nodes_numb - 1))
|
||
|
for node in self.s1.structure.nodes_labels:
|
||
|
no_self_loops = self.s1.structure.nodes_labels[:]
|
||
|
no_self_loops.remove(node)
|
||
|
for n2 in no_self_loops:
|
||
|
self.assertIn((node, n2), cg.edges)
|
||
|
|
||
|
def test_build_removable_edges_matrix(self):
|
||
|
exp_alfa = 0.1
|
||
|
chi_alfa = 0.1
|
||
|
known_edges = self.s1.structure.edges[0:2]
|
||
|
se1 = StructureConstraintBasedEstimator(self.s1, exp_alfa, chi_alfa, known_edges)
|
||
|
for edge in known_edges:
|
||
|
i = self.s1.structure.get_node_indx(edge[0])
|
||
|
j = self.s1.structure.get_node_indx(edge[1])
|
||
|
self.assertFalse(se1._removable_edges_matrix[i][j])
|
||
|
|
||
|
def test_generate_possible_sub_sets_of_size(self):
|
||
|
exp_alfa = 0.1
|
||
|
chi_alfa = 0.1
|
||
|
nodes_numb = len(self.s1.structure.nodes_labels)
|
||
|
se1 = StructureConstraintBasedEstimator(self.s1, exp_alfa, chi_alfa)
|
||
|
|
||
|
for node in self.s1.structure.nodes_labels:
|
||
|
for b in range(nodes_numb):
|
||
|
sets = StructureConstraintBasedEstimator.generate_possible_sub_sets_of_size(self.s1.structure.nodes_labels, b, node)
|
||
|
sets2 = StructureConstraintBasedEstimator.generate_possible_sub_sets_of_size(self.s1.structure.nodes_labels, b, node)
|
||
|
self.assertEqual(len(list(sets)), math.floor(math.factorial(nodes_numb - 1) /
|
||
|
(math.factorial(b)*math.factorial(nodes_numb -1 - b))))
|
||
|
for sset in sets2:
|
||
|
self.assertFalse(node in sset)
|
||
|
|
||
|
def test_time(self):
|
||
|
known_edges = []
|
||
|
se1 = StructureConstraintBasedEstimator(self.s1, 0.1, 0.1, known_edges,25)
|
||
|
exec_time = timeit.timeit(se1.ctpc_algorithm, number=1)
|
||
|
print("Execution Time: ", exec_time)
|
||
|
for ed in self.s1.structure.edges:
|
||
|
self.assertIn(tuple(ed), se1._complete_graph.edges)
|
||
|
|
||
|
def test_save_results(self):
|
||
|
se1 = StructureConstraintBasedEstimator(self.s1, 0.1, 0.1)
|
||
|
se1.ctpc_algorithm()
|
||
4 years ago
|
file_name = './PyCTBN/tests/estimators/test_save.json'
|
||
|
se1.save_results(file_name)
|
||
4 years ago
|
with open(file_name) as f:
|
||
|
js_graph = json.load(f)
|
||
|
result_graph = nx.json_graph.node_link_graph(js_graph)
|
||
|
self.assertFalse(nx.difference(se1._complete_graph, result_graph).edges)
|
||
|
os.remove(file_name)
|
||
|
|
||
|
def test_adjacency_matrix(self):
|
||
|
se1 = StructureConstraintBasedEstimator(self.s1, 0.1, 0.1)
|
||
|
se1.ctpc_algorithm()
|
||
4 years ago
|
adj_matrix = nx.adj_matrix(self.real_net_structure, self.s1.structure.nodes_labels).toarray().astype(bool)
|
||
4 years ago
|
self.assertTrue(np.array_equal(adj_matrix, se1.adjacency_matrix()))
|
||
|
|
||
|
def test_save_plot_estimated_graph(self):
|
||
|
se1 = StructureConstraintBasedEstimator(self.s1, 0.1, 0.1)
|
||
|
edges = se1.estimate_structure(disable_multiprocessing=True)
|
||
4 years ago
|
file_name = './PyCTBN/tests/estimators/test_plot.png'
|
||
|
se1.save_plot_estimated_structure_graph(file_name)
|
||
|
os.remove(file_name)
|
||
|
|
||
4 years ago
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
unittest.main()
|