Old engine for Continuous Time Bayesian Networks. Superseded by reCTBN. 🐍
https://github.com/madlabunimib/PyCTBN
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
109 lines
3.1 KiB
109 lines
3.1 KiB
4 years ago
|
import sys
|
||
|
sys.path.append("../../classes/")
|
||
|
import glob
|
||
|
import math
|
||
|
import os
|
||
|
import unittest
|
||
|
|
||
|
import networkx as nx
|
||
|
import numpy as np
|
||
|
import psutil
|
||
|
from line_profiler import LineProfiler
|
||
|
import copy
|
||
|
|
||
|
import utility.cache as ch
|
||
|
import structure_graph.sample_path as sp
|
||
|
import estimators.structure_constraint_based_estimator as se
|
||
|
import utility.json_importer as ji
|
||
|
|
||
|
|
||
|
|
||
|
class TestTabuSearch(unittest.TestCase):
|
||
|
|
||
|
@classmethod
|
||
|
def setUpClass(cls):
|
||
|
pass
|
||
|
|
||
|
|
||
|
|
||
|
def test_constr(self):
|
||
|
|
||
|
list_vals= [3,4,5,6,10,15]
|
||
|
|
||
|
list_dens = [["0.1","_01"],["0.2","_02"], ["0.3",""], ["0.4","_04"] ]
|
||
|
|
||
|
for dens in list_dens:
|
||
|
for var_n in list_vals:
|
||
|
|
||
|
var_number= var_n
|
||
|
|
||
|
cardinality = 4
|
||
|
cardinality_string = "quaternary"
|
||
|
|
||
|
density= dens[0]
|
||
|
density_string = dens[1]
|
||
|
|
||
|
|
||
|
|
||
|
constraint = 1
|
||
|
|
||
|
|
||
|
|
||
|
index = 0
|
||
|
num_networks=10
|
||
|
|
||
|
if var_number > 9:
|
||
|
num_networks=3
|
||
|
|
||
|
while index < num_networks:
|
||
|
#cls.read_files = glob.glob(os.path.join('../../data', "*.json"))
|
||
|
self.importer = ji.JsonImporter(f"../../data/networks_and_trajectories_{cardinality_string}_data{density_string}_{var_number}.json",
|
||
|
'samples', 'dyn.str', 'variables', 'Time', 'Name', index )
|
||
|
self.s1 = sp.SamplePath(self.importer)
|
||
|
self.s1.build_trajectories()
|
||
|
self.s1.build_structure()
|
||
|
|
||
|
|
||
|
true_edges = copy.deepcopy(self.s1.structure.edges)
|
||
|
true_edges = set(map(tuple, true_edges))
|
||
|
|
||
|
se1 = se.StructureConstraintBasedEstimator(self.s1, 0.1, 0.1)
|
||
|
se1.ctpc_algorithm()
|
||
|
|
||
|
|
||
|
set_list_edges = set(se1.complete_graph.edges)
|
||
|
|
||
|
|
||
|
n_added_fake_edges = len(set_list_edges.difference(true_edges))
|
||
|
|
||
|
n_missing_edges = len(true_edges.difference(set_list_edges))
|
||
|
|
||
|
n_true_positive = len(true_edges) - n_missing_edges
|
||
|
|
||
|
precision = n_true_positive / (n_true_positive + n_added_fake_edges)
|
||
|
|
||
|
recall = n_true_positive / (n_true_positive + n_missing_edges)
|
||
|
|
||
|
f1_measure = round(2* (precision*recall) / (precision+recall),3)
|
||
|
|
||
|
# print(f"n archi reali non trovati: {n_missing_edges}")
|
||
|
# print(f"n archi non reali aggiunti: {n_added_fake_edges}")
|
||
|
print(true_edges)
|
||
|
print(set_list_edges)
|
||
|
print(f"precision: {precision} ")
|
||
|
print(f"recall: {recall} ")
|
||
|
|
||
|
|
||
|
with open("../results/results.csv", 'a+') as fi:
|
||
|
fi.write(f"{constraint},{var_number},{density},{cardinality},{index},{f1_measure},{round(precision,3)},{round(recall,3)}")
|
||
|
|
||
|
index += 1
|
||
|
|
||
|
self.assertEqual(set_list_edges, true_edges)
|
||
|
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
unittest.main()
|
||
|
|