|
|
|
import sys
|
|
|
|
sys.path.append('../')
|
|
|
|
import itertools
|
|
|
|
import json
|
|
|
|
import typing
|
|
|
|
|
|
|
|
import networkx as nx
|
|
|
|
import numpy as np
|
|
|
|
from networkx.readwrite import json_graph
|
|
|
|
|
|
|
|
from random import choice
|
|
|
|
|
|
|
|
from abc import ABC
|
|
|
|
|
|
|
|
import copy
|
|
|
|
|
|
|
|
|
|
|
|
from optimizers.optimizer import Optimizer
|
|
|
|
from estimators import structure_estimator as se
|
|
|
|
import structure_graph.network_graph as ng
|
|
|
|
|
|
|
|
|
|
|
|
class ConstraintBasedOptimizer(Optimizer):
|
|
|
|
"""
|
|
|
|
Optimizer class that implement Hill Climbing Search
|
|
|
|
|
|
|
|
"""
|
|
|
|
def __init__(self,
|
|
|
|
node_id:str,
|
|
|
|
structure_estimator: se.StructureEstimator,
|
|
|
|
tot_vars_count:int
|
|
|
|
):
|
|
|
|
"""
|
|
|
|
Compute Optimization process for a structure_estimator
|
|
|
|
|
|
|
|
"""
|
|
|
|
super().__init__(node_id, structure_estimator)
|
|
|
|
self.tot_vars_count = tot_vars_count
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def optimize_structure(self):
|
|
|
|
"""
|
|
|
|
Compute Optimization process for a structure_estimator
|
|
|
|
|
|
|
|
Parameters:
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
the estimated structure for the node
|
|
|
|
|
|
|
|
"""
|
|
|
|
print("##################TESTING VAR################", self.node_id)
|
|
|
|
|
|
|
|
graph = ng.NetworkGraph(self.structure_estimator.sample_path.structure)
|
|
|
|
|
|
|
|
other_nodes = [node for node in self.structure_estimator.sample_path.structure.nodes_labels if node != self.node_id]
|
|
|
|
|
|
|
|
for possible_parent in other_nodes:
|
|
|
|
graph.add_edges([(possible_parent,self.node_id)])
|
|
|
|
|
|
|
|
|
|
|
|
u = other_nodes
|
|
|
|
#tests_parents_numb = len(u)
|
|
|
|
#complete_frame = self.complete_graph_frame
|
|
|
|
#test_frame = complete_frame.loc[complete_frame['To'].isin([self.node_id])]
|
|
|
|
child_states_numb = self.structure_estimator.sample_path.structure.get_states_number(self.node_id)
|
|
|
|
b = 0
|
|
|
|
while b < len(u):
|
|
|
|
#for parent_id in u:
|
|
|
|
parent_indx = 0
|
|
|
|
list_parent= copy.deepcopy(u)
|
|
|
|
for possible_parent in list_parent:
|
|
|
|
removed = False
|
|
|
|
#if not list(self.structure_estimator.generate_possible_sub_sets_of_size(u, b, u[parent_indx])):
|
|
|
|
#break
|
|
|
|
S = self.structure_estimator.generate_possible_sub_sets_of_size(u, b, possible_parent)
|
|
|
|
#print("U Set", u)
|
|
|
|
#print("S", S)
|
|
|
|
test_parent = possible_parent
|
|
|
|
#print("Test Parent", test_parent)
|
|
|
|
for parents_set in S:
|
|
|
|
#print("Parent Set", parents_set)
|
|
|
|
#print("Test Parent", test_parent)
|
|
|
|
if self.structure_estimator.complete_test(test_parent, self.node_id, parents_set, child_states_numb, self.tot_vars_count):
|
|
|
|
#print("Removing EDGE:", test_parent, self.node_id)
|
|
|
|
graph.remove_edges([(test_parent, self.node_id)])
|
|
|
|
other_nodes.remove(test_parent)
|
|
|
|
print(f"TEST PARENT: {test_parent}")
|
|
|
|
if u.__contains__(test_parent):
|
|
|
|
u.remove(test_parent)
|
|
|
|
removed = True
|
|
|
|
break
|
|
|
|
#else:
|
|
|
|
#parent_indx += 1
|
|
|
|
if not removed:
|
|
|
|
parent_indx += 1
|
|
|
|
b += 1
|
|
|
|
self.structure_estimator.cache.clear()
|
|
|
|
return graph.edges
|