|
|
|
import os
|
|
|
|
import time as tm
|
|
|
|
from line_profiler import LineProfiler
|
|
|
|
from multiprocessing import Process
|
|
|
|
|
|
|
|
import numba as nb
|
|
|
|
import numpy as np
|
|
|
|
import network_graph as ng
|
|
|
|
import sample_path as sp
|
|
|
|
import amalgamated_cims as acims
|
|
|
|
|
|
|
|
|
|
|
|
class ParametersEstimator:
|
|
|
|
|
|
|
|
def __init__(self, sample_path, net_graph):
|
|
|
|
self.sample_path = sample_path
|
|
|
|
self.net_graph = net_graph
|
|
|
|
self.fancy_indexing_structure = self.net_graph.build_fancy_indexing_structure(1)
|
|
|
|
self.amalgamated_cims_struct = None
|
|
|
|
|
|
|
|
def init_amalgamated_cims_struct(self):
|
|
|
|
self.amalgamated_cims_struct = acims.AmalgamatedCims(self.net_graph.get_states_number_of_all_nodes_sorted(),
|
|
|
|
self.net_graph.get_nodes(),
|
|
|
|
self.net_graph.get_ordered_by_indx_parents_values_for_all_nodes())
|
|
|
|
|
|
|
|
def parameters_estimation(self):
|
|
|
|
print("Starting computing")
|
|
|
|
t0 = tm.time()
|
|
|
|
for trajectory in self.sample_path.trajectories:
|
|
|
|
#tr_length = trajectory.size()
|
|
|
|
self.parameters_estimation_single_trajectory(trajectory.get_trajectory())
|
|
|
|
#print("Finished Trajectory number", indx)
|
|
|
|
t1 = tm.time() - t0
|
|
|
|
print("Elapsed Time ", t1)
|
|
|
|
|
|
|
|
def parameters_estimation_single_trajectory(self, trajectory):
|
|
|
|
|
|
|
|
row_length = trajectory.shape[1]
|
|
|
|
for indx, row in enumerate(trajectory[:-1]):
|
|
|
|
self.compute_sufficient_statistics_for_row(trajectory[indx], trajectory[indx + 1], row_length)
|
|
|
|
|
|
|
|
def compute_sufficient_statistics_for_row(self, current_row, next_row, row_length):
|
|
|
|
#time = self.compute_time_delta(current_row, next_row)
|
|
|
|
time = current_row[0]
|
|
|
|
for indx in range(1, row_length):
|
|
|
|
if current_row[indx] != next_row[indx] and next_row[indx] != -1:
|
|
|
|
transition = [indx - 1, (current_row[indx], next_row[indx])]
|
|
|
|
which_node = transition[0]
|
|
|
|
which_matrix = self.which_matrix_to_update(current_row, transition[0])
|
|
|
|
which_element = transition[1]
|
|
|
|
self.amalgamated_cims_struct.update_state_transition_for_matrix(which_node, which_matrix, which_element)
|
|
|
|
which_element = transition[1][0]
|
|
|
|
self.amalgamated_cims_struct.update_state_residence_time_for_matrix(which_node, which_matrix,
|
|
|
|
which_element,
|
|
|
|
time)
|
|
|
|
else:
|
|
|
|
which_node = indx - 1
|
|
|
|
which_matrix = self.which_matrix_to_update(current_row, which_node)
|
|
|
|
which_element = current_row[indx]
|
|
|
|
self.amalgamated_cims_struct.update_state_residence_time_for_matrix(
|
|
|
|
which_node, which_matrix, which_element, time)
|
|
|
|
|
|
|
|
def which_matrix_to_update(self, current_row, node_indx):
|
|
|
|
#print(type(self.fancy_indexing_structure[node_indx]))
|
|
|
|
return tuple(current_row.take(self.fancy_indexing_structure[node_indx]))
|
|
|
|
#return tuple(ParametersEstimator.taker(current_row, self.fancy_indexing_structure[node_indx]))
|
|
|
|
|
|
|
|
def parameters_estimation_for_variable_multiple_parents(self, node_indx, times, transitions ,variable_values, parents_values):
|
|
|
|
#print(times)
|
|
|
|
#print(variable_values)
|
|
|
|
#print(parents_values)
|
|
|
|
|
|
|
|
#print("Starting computing")
|
|
|
|
#t0 = tm.time()
|
|
|
|
for indx, row in enumerate(variable_values):
|
|
|
|
time = times[indx]
|
|
|
|
which_matrix = tuple(parents_values[indx]) # questo è un vettore
|
|
|
|
current_state = variable_values[indx]
|
|
|
|
"""if transitions[indx] == 1:
|
|
|
|
prev_state = variable_values[indx - 1]
|
|
|
|
transition = [node_indx, (prev_state, current_state)]
|
|
|
|
#which_node = transition[0]
|
|
|
|
which_element = transition[1]
|
|
|
|
self.amalgamated_cims_struct.update_state_transition_for_matrix(node_indx, which_matrix, which_element)
|
|
|
|
#which_element = current_state"""
|
|
|
|
self.amalgamated_cims_struct.update_state_residence_time_for_matrix(node_indx, which_matrix,
|
|
|
|
current_state,
|
|
|
|
time)
|
|
|
|
|
|
|
|
def parameters_estimation_for_variable_single_parent(self, node_indx, times, transitions, variable_values,
|
|
|
|
parents_values):
|
|
|
|
for indx, row in enumerate(variable_values):
|
|
|
|
time = times[indx]
|
|
|
|
which_matrix = parents_values[indx] # Avendo un solo parent questo è uno scalare
|
|
|
|
current_state = variable_values[indx]
|
|
|
|
#which_matrix = ParametersEstimator.taker(parents_values, indx)
|
|
|
|
# print(which_matrix.dtype)
|
|
|
|
if transitions[indx] == 1:
|
|
|
|
prev_state = variable_values[indx - 1]
|
|
|
|
transition = [node_indx, (prev_state, current_state)]
|
|
|
|
which_element = transition[1]
|
|
|
|
self.amalgamated_cims_struct.update_state_transition_for_matrix(node_indx, which_matrix,
|
|
|
|
which_element)
|
|
|
|
which_element = current_state
|
|
|
|
self.amalgamated_cims_struct.update_state_residence_time_for_matrix(node_indx, which_matrix,
|
|
|
|
which_element,time)
|
|
|
|
|
|
|
|
def parameters_estimation_for_variable_no_parent(self, node_indx, times, transitions,variable_values):
|
|
|
|
|
|
|
|
for indx, row in enumerate(variable_values):
|
|
|
|
time = times[indx]
|
|
|
|
|
|
|
|
which_matrix = 0
|
|
|
|
current_state = variable_values[indx]
|
|
|
|
"""if transitions[indx] == 1:
|
|
|
|
prev_state = variable_values[indx - 1]
|
|
|
|
#current_state = variable_values[indx]
|
|
|
|
transition = [node_indx, (prev_state, current_state)]
|
|
|
|
|
|
|
|
which_element = transition[1]
|
|
|
|
self.amalgamated_cims_struct.update_state_transition_for_matrix(node_indx, which_matrix,
|
|
|
|
which_element)"""
|
|
|
|
which_element = current_state
|
|
|
|
self.amalgamated_cims_struct.update_state_residence_time_for_matrix(node_indx, which_matrix,
|
|
|
|
which_element,
|
|
|
|
time)
|
|
|
|
|
|
|
|
#t1 = tm.time() - t0
|
|
|
|
#print("Elapsed Time ", t1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Simple Test #
|
|
|
|
os.getcwd()
|
|
|
|
os.chdir('..')
|
|
|
|
path = os.getcwd() + '/data'
|
|
|
|
|
|
|
|
s1 = sp.SamplePath(path)
|
|
|
|
s1.build_trajectories()
|
|
|
|
s1.build_structure()
|
|
|
|
|
|
|
|
g1 = ng.NetworkGraph(s1.structure)
|
|
|
|
g1.init_graph()
|
|
|
|
|
|
|
|
pe = ParametersEstimator(s1, g1)
|
|
|
|
pe.init_amalgamated_cims_struct()
|
|
|
|
print(pe.amalgamated_cims_struct.get_set_of_cims(0).get_cims_number())
|
|
|
|
print(pe.amalgamated_cims_struct.get_set_of_cims(1).get_cims_number())
|
|
|
|
print(pe.amalgamated_cims_struct.get_set_of_cims(2).get_cims_number())
|
|
|
|
print(np.shape(s1.trajectories[0].transitions)[0])
|
|
|
|
#pe.parameters_estimation_for_variable(0, pe.sample_path.trajectories[0].get_trajectory()[:, 0],
|
|
|
|
# pe.sample_path.trajectories[0].get_trajectory()[:, 1], [])
|
|
|
|
#pe.parameters_estimation_single_trajectory(pe.sample_path.trajectories[0].get_trajectory())
|
|
|
|
#pe.parameters_estimation()
|
|
|
|
lp = LineProfiler()
|
|
|
|
#lp.add_function(pe.compute_sufficient_statistics_for_row) # add additional function to profile
|
|
|
|
#lp_wrapper = lp(pe.parameters_estimation_single_trajectory)
|
|
|
|
#lp_wrapper = lp(pe.parameters_estimation)
|
|
|
|
#lp_wrapper(pe.sample_path.trajectories[0].get_trajectory())
|
|
|
|
#lp.print_stats()
|
|
|
|
|
|
|
|
#lp_wrapper = lp(pe.parameters_estimation_for_variable)
|
|
|
|
#lp_wrapper(2, pe.sample_path.trajectories[0].get_times(),
|
|
|
|
#pe.sample_path.trajectories[0].get_trajectory()[:, 2],
|
|
|
|
#pe.sample_path.trajectories[0].get_trajectory()[:, [0,1]])
|
|
|
|
|
|
|
|
|
|
|
|
"""lp_wrapper = lp(pe.parameters_estimation_for_variable_single_parent)
|
|
|
|
lp_wrapper(1, pe.sample_path.trajectories[0].get_times(),
|
|
|
|
pe.sample_path.trajectories[0].get_trajectory()[:, 1],
|
|
|
|
pe.sample_path.trajectories[0].get_trajectory()[:, 2])
|
|
|
|
lp.print_stats()
|
|
|
|
|
|
|
|
#print( pe.sample_path.trajectories[0].get_trajectory()[:, [1,2]])
|
|
|
|
for matrix in pe.amalgamated_cims_struct.get_set_of_cims(1).actual_cims:
|
|
|
|
print(matrix.state_residence_times)
|
|
|
|
print(matrix.state_transition_matrix)
|
|
|
|
matrix.compute_cim_coefficients()
|
|
|
|
print(matrix.cim)"""
|
|
|
|
|
|
|
|
"""lp_wrapper = lp(pe.parameters_estimation_for_variable_no_parent)
|
|
|
|
lp_wrapper(0, pe.sample_path.trajectories[0].get_times(), pe.sample_path.trajectories[0].transitions[:, 0],
|
|
|
|
pe.sample_path.trajectories[0].get_trajectory()[:, 0] )
|
|
|
|
lp.print_stats()
|
|
|
|
lp_wrapper = lp(pe.parameters_estimation_for_variable_single_parent)
|
|
|
|
lp_wrapper(1, pe.sample_path.trajectories[0].get_times(), pe.sample_path.trajectories[0].transitions[:, 1],
|
|
|
|
pe.sample_path.trajectories[0].get_trajectory()[:,1], pe.sample_path.trajectories[0].get_trajectory()[:,2] )
|
|
|
|
lp.print_stats()"""
|
|
|
|
lp_wrapper = lp(pe.parameters_estimation_for_variable_multiple_parents)
|
|
|
|
lp_wrapper(2, pe.sample_path.trajectories[0].get_times(), pe.sample_path.trajectories[0].transitions[:, 2],
|
|
|
|
pe.sample_path.trajectories[0].get_trajectory()[:,2], pe.sample_path.trajectories[0].get_trajectory()[:, [0,1]] )
|
|
|
|
lp.print_stats()
|